
The Advantages and Limitations of High Level Synthesis
for FPGA Based Image Processing

Donald G. Bailey
School of Engineering and Advanced Technology

Massey University
Palmerston North, New Zealand
D.G.Bailey@massey.ac.nz

ABSTRACT
High level synthesis (HLS) tools can provide significant ben-
efits for implementing image processing algorithms on FP-
GAs. The higher level (usually C based) representation en-
ables algorithms to be expressed more easily, significantly
reducing development times. The higher level also makes
design space exploration easier, making it easier to optimise
the trade-off between resources and processing speed. How-
ever, one danger of using HLS is simply porting existing
image processing algorithms onto an FPGA platform. Of-
ten, better parallel or pipelined algorithms may be may be
designed which are better suited to the FPGA architecture.
Examples will be given from image filtering, to connected
components analysis, to efficient memory management for
2-D frequency domain based filtering.

CCS Concepts
•Hardware → High-level and register-transfer level
synthesis; Reconfigurable logic applications; •Comp-
uting methodologies → Computer vision problems;

Keywords
rapid development; design space exploration; architecture
exploration; smart camera

1. INTRODUCTION
With increased processing power, there has been a trend

towards performing image processing within the camera it-
self, rather than using a separate computer. Such “smart
cameras” no longer simply capture images, but also per-
form much of the image processing and communicate the
processed images or even just the data extracted from the
images [10]. However, even with advances in device tech-
nology, low power general purpose processors often strug-
gle with the processing demands of image processing appli-
cations. Initially, digital signal processors were commonly
used to implement smart cameras [9, 36]. More recently,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICDSC ’15, September 08 - 11, 2015, Seville, Spain
c© 2015 ACM. ISBN 978-1-4503-3681-9/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2789116.2789145

field programmable gate arrays (FPGAs) have been gaining
popularity for image processing within smart cameras [11,
16, 27] because modern FPGAs now have sufficient resources
to implement all of the processing for a complete application
within a single low cost FPGA [3].

The conventional approach to developing the firmware for
such FPGA based embedded vision applications is to first
develop and test the algorithms on using a general purpose
software based image processing system. This is because
algorithm development, and in particular testing, is much
easier to perform on a software platform than it is directly
in hardware [3]. These high level algorithms are effectively
behavioural models of the design, and are usually written in
C or C++ because such languages provide efficient system
descriptions, and are supported by a broad range of compil-
ers, development and debugging tools. Once the algorithm
is functioning as desired, it is then ported or mapped to a
hardware description language such as VHDL or Verilog for
FPGA implementation. Such lower level design is usually
at the register transfer level (RTL). Recoding of complex
algorithms as RTL designs is both tedious and error prone.
This, coupled with the large software code base of image
processing algorithms, has led to development of compilers
which can directly synthesise the RTL hardware from the
high level software designs [1]. It is this characteristic that
is the basis of many of the advantages of high level synthesis
(HLS). There is a wide range of HLS tools available, which
differ significantly in both their ease of use and the quality
of hardware derived [25].

There are five key challenges that such HLS tools must
overcome [17]. These form the basis of many of the limita-
tions of HLS:

• Hardware in inherently concurrent, whereas software
representations are sequential. HLS must map the se-
quential algorithm onto concurrent hardware.

• Timing is implicit in software in the sequence of in-
structions used. Synchronous hardware must deal with
timing constraints, with controlling and synchronising
operations at the clock cycle level.

• In software, the word length is fixed (8, 16, 32 or 64
bits), but in hardware, it is usually optimised for the
task being performed [8, 13].

• The software model of memory is as a single block with
a monolithic address space, with almost all data items
stored in memory. On an FPGA, local variables are
stored in registers, with multiple distributed memory

134

blocks, each with their own independent address space.
In such an environment, pointers have little meaning,
and dynamic memory allocation is very difficult.

• Communication in software is usually through shared
memory, whereas on an FPGA it relies on construct-
ing appropriate hardware, from implicit (within stream
processing), to simple token passing, to using dedi-
cated FIFOs to manage flow control.

Modern HLS tools generally perform the following steps:
dataflow analysis (to determine the operations that need to
be performed); resource allocation (to determine how many
hardware operators are needed to execute all of the source
code operations); resource binding (to allocate source code
operations to hardware resources); and scheduling (to de-
termine when each source code operation is executed on the
allocated hardware).

HLS offers the promise of enabling software engineers to
implement hardware [1, 28]. In some ways, this is true, and
these are explored in section 2 looking at the benefits of
HLS. In other ways, HLS does not live up to its promises,
and the limitations of current HLS tools are analysed in
section 3. Section 4 presents three case studies of standard
image processing operations where a näıve HLS approach
fails. Section 5 summarises with some concluding remarks.

2. BENEFITS OF HLS
With high level synthesis, code can be relatively easily

ported from software to a hardware implementation. Many
of the current generation compilers can work with standard
C code, and compile from C to RTL, and rely on the FPGA
vendor specific tools for synthesising this onto an FPGA
[6]. However, simply compiling software code for FPGA is
seldom sufficient. The software algorithm has often been
optimised for implementation on a CPU based processor. It
is usually necessary to restructure the algorithm for it to
better suit hardware. However, rather than perform this
step manually in the translation from C to RTL, with HLS
this restructuring can be performed directly on the high level
source, which is easier and less error prone [6].

One of the key benefits of working directly in a high level
language is that the control path is often implicit in the
language representation. HLS tools analyse the structure
of the algorithm (loops, branches, etc.) to automatically
extract and build the control path. In contrast with this,
manual implementation in RTL requires explicitly coding
the control path as well as the data path. For complex
algorithms, designing the control path can take as much
effort as designing the data path.

Modern synthesis tools are able to exploit parallelism in
three main ways [18]:

• By performing a dataflow analysis to determine data
dependencies. From this, the processing sequence can
be inferred, and pipelined if necessary to meet desired
timing constraints.

• By analysing loops which involve significant processing
with limited dependencies between iterations. This en-
ables a pipelined architecture to be inferred, where a
subsequent iteration can be started before the previ-
ous iteration has completed. Such processing fits well
with a streamed type of architecture.

• By unrolling loops. Multiple parallel hardware blocks
are built to enable the iterations to be parallelised.

Design space exploration involves exploring different com-
binations of these to make explicit the trade-off between
speed and resources. This is usually accomplished through
a combination of source code optimisation and synthesis di-
rectives, depending on the particular tool [25]. Within HLS,
software profiling tools can help to identify processing bot-
tlenecks, enabling more effort to be concentrated on where
it can potentially achieve the greatest gains. Many of the
different factors involved in a design space exploration are
controlled by synthesis directives . Coupled with this, the
HLS tools can provide a reasonably accurate estimate of re-
sources without having to synthesise the resulting RTL [6].
Such estimates enable the effect of different combinations
of parallelism and source code optimisations to be quickly
evaluated, facilitating early design exploration. In contrast,
manual RTL coding will generally require considerable re-
coding to change both the data and control paths, making
design space exploration at the RTL level both time con-
suming and error prone.

For each of the designs generated, simulation or verifica-
tion is significantly faster within the high level tools. This
is because the verification takes place at a higher level [31].
However, it is still necessary to validate the final design at
the RTL level to ensure that the algorithm transformations
are correct [31]. In some tools, the RTL test-benches can
be automatically generated from the high level verification
code facilitating this step [25].

In co-processor environments, where the computation is
shared between an FPGA and CPU, HLS enables the same
source code to be compiled either as hardware or software
(for example [29, 35]). This enables different modules to be
rapidly swapped between hardware and software implemen-
tation, making it easier to find the optimum mix.

For appropriately structured code, modern HLS tools can
generate designs that are as efficient as hand-coded RTL in
terms of both resources and processing speed [6, 25, 37].
Given this, why would anyone still code in RTL?

3. LIMITATIONS OF HLS
Unfortunately, it is not as simple as just compiling code for

hardware. With most tools, the algorithm must be written
in a particular style to enable the synthesis tools to identify
and exploit parallelism [18]. This requires restructuring the
code. Without such restructuring, the HLS tools can still
derive a hardware realisation, but the resulting hardware
can be bloated and suffer from poor performance [20].

The key factor here is that FPGA based design is hard-
ware, not software design. The synthesis language (whether
RTL or HLS) is describing hardware, even though many lan-
guages strongly show their software roots. Each statement
describes hardware which must be built, rather than provid-
ing a set of instructions to be executed. While modern HLS
tools can reuse hardware for different statements, this is de-
pendent on the compiler being able to recognise that they
occur at different times so they can be successfully sched-
uled. With many high level languages for synthesis, it is very
easy to slip into a software mind-set, especially if describing
algorithms and the developer has had significant software
experience. Treating hardware description languages like
software can often lead to inefficient use of hardware. While

135

algorithmic representation for software is mature, for hard-
ware realisation it is still in its relative infancy in spite of
ongoing research in this area (see for example [7, 14, 21]).

Algorithms based strongly on pointers and pointer arith-
metic do not synthesise well to hardware [37]. In software, a
pointer is an address of a variable in memory. There are two
difficulties this poses in an FPGA implementation. First,
on-chip memory is distributed, with many relatively small,
independent blocks, each with their own address space. Sec-
ond, in hardware many variables are stored in registers.
While it is possible to emulate pointers within such a system,
it is not particularly transparent and the resulting hardware
is somewhat unwieldy. Another problem with pointers is
that they can obscure the data-flow, making it difficult for
the HLS tools to identify data dependencies. If possible,
such algorithms need to be restructured to use array ref-
erences, with the relevant arrays mapped into one or more
distributed memory blocks.

Recursion is another software technique that does not
translate well to hardware. Functions or procedures in soft-
ware store local variables on the stack, so that each call has
separate space for variable storage. On an FPGA, a function
is implemented as a block of hardware, with a procedure call
multiplexing that hardware for each invocation. There is no
stack; local variables are generally stored in registers, which
are shared with every call of the procedure. Reuse of regis-
ters by successive calls limits the use of recursive functions
to tail-recursion. In general, recursive algorithms must be
restructured to use an equivalent iteration.

In general, concurrent system design is difficult because of
the need to design synchronisation. Single-threaded software
design does not have this problem, because everything is im-
plicitly sequential. With multiple threads, it is necessary to
ensure synchronisation at key points. This is usually man-
aged at a relatively course grained level though mailboxes
or through fork/join constructs, enabling multiple cores or
processors to be exploited. In hardware concurrency is much
finer grained, with every logic block effectively running con-
currently. At this finer level, there are many more tasks to
synchronise. While HLS does reasonably well at scheduling
and pipelining sequences of operations, and synchronising
distribution of computation over multiple parallel proces-
sors, it struggles with more complex synchronisation.

The RTL produced by HLS tools is not particularly human-
readable making the code very difficult to modify at that
level [32]. In general, the purpose for using HLS is to avoid
needing to do any RTL programming. However, it is still
necessary to verify the RTL output [31, 32]. If RTL verifi-
cation indicates failure, it can be very difficult to determine
what exactly is causing the problem in the HLS [32].

Regardless of representation, the best algorithms for hard-
ware realisation are not necessarily the same as those used
in software [3, 23]. While HLS tools will produce hardware
for realising the algorithm, there may be better or more ap-
propriate algorithms. In general, software is memory based,
with all data structures stored in a single monolithic mem-
ory (at least logically, if not in reality). Many software al-
gorithms, particularly for image processing, are therefore
memory bound with their execution speed limited by mem-
ory bandwidth. On FPGAs, stream based processing is effi-
cient for image processing [3], especially for operations close
to the camera (pre-processing) or display where the input
and output data are naturally streamed. In some cases, al-

gorithms which rely on random data access (the paradigm
normally used by software) can be restructured to enable
stream processing (see for example [2]).

4. CASE STUDIES
The main limitation of using HLS is that it does not re-

move the need for hardware design. If it is realised that the
language is not software, but actually describing hardware,
then it is possible to use the high level languages to also de-
scribe relatively low level constructs where necessary. The
first case study gives an example of where this is the case.
The second study demonstrates that algorithm transforma-
tion can result in significant improvements over an existing
software algorithm. In this example, the transformation is
beyond what can be performed by synthesis tools. The third
example explores both algorithm transformation, and mem-
ory mapping to improve the performance of an algorithm.

4.1 Image filtering
Image filtering is one of the most commonly used exam-

ples of the benefits of HLS. This is because it is one of the
most common image processing operations, and the design
of efficient filters is non-trivial. Several HLS tools can read-
ily identify the data access patterns associated with filtering,
and build the necessary row buffers and windowing to en-
able efficient streamed implementation (see for example [12,
19, 26]). Other HLS tools identify the access patterns asso-
ciated with filters, and substitute an optimised, pre-defined
windowing architecture (such as those designed in [33]).

The problem with filtering comes when handling the im-
age borders. When part of the filter window extends past
the edges of the image, the access pattern in perturbed. In
software, this is commonly managed by having conditional
code within the filter to handle the different cases around
each image border. HLS struggles to integrate these with
the standard access pattern, resulting in failure to recog-
nise the windowing access pattern, separate hardware being
built for each case, or inefficient reuse of hardware. Because
of the number of exceptions (four edges and four corners
of the image), it is easy for this additional hardware to be
significantly larger than that for handling the normal case.

However, with careful design, this need not necessarily
be the case. In [4] it is shown that the additional border
management logic can be integrated with window creation
with modest additional resources (a few multiplexers and
registers, as shown in Fig. 1 for border mirroring). It can
provide one window per clock cycle, with no blanking de-
lays required between rows or frames). By separating the
window formation from the filter function, the logic for the
filter function is unchanged. While this could be integrated
into predefined windowing architectures, this would require
additional directives to select border management.

4.2 Connected components analysis
Many algorithms require multiple processing passes through

the image. This necessitates storing the intermediate images
from each pass within a frame buffer. A typical example of
such an algorithm is connected components analysis.

In software, multiple passes through the image are typ-
ically used [30]. First, two passes are required to perform
connected component labelling, which labels each set of con-
nected pixels within the image with a unique label. Then
each component is selected from the image for processing to

136

N
N+1

22 22
Row buffer

Row buffer

Row buffer

Row buffer

Input stream

Filtered output stream

N
N+1

N+1

2

2
3

Filter function

Figure 1: Border management by mirroring pixels
with a 5×5 window, from [4]. Window registers are
shaded dark grey. Row logic is repeated for each
row.

extract features of that component, such as its area, centre
of gravity, shape, etc.

Since the algorithm is largely sequential, the data depen-
dency on the current pixel’s predecessors makes parallelisa-
tion non-trivial. When directly synthesised for hardware,
such an algorithm would retain the same sequential compu-
tational architecture, at least for the first two passes. Fea-
ture extraction for each component is independent of the
other components, so is readily parallelisable, at the expense
of building multiple copies of the feature extraction logic.

While a sequential algorithm is adequate for processing
on a CPU based processor, there exist better parallel algo-
rithms. Unless one of these parallel algorithms is coded, it
is difficult, if not impossible, for the synthesis tools to effi-
ciently parallelise. For stream processing, a single pass con-
nected components analysis algorithm is described in [22]
and is further optimised in [24]. These algorithms make use
of the observation that if features are extracted in the first
pass, then it is not necessary to produce a labelled image,
making the second pass unnecessary. With stream process-
ing, features for multiple connected regions are extracted in
parallel; however the logic for feature accumulation can be
shared because each pixel can only belong to one connected
component. Such a single pass algorithm significantly re-
duces both resources (it does not need to save the image in
a frame buffer within the processing) and latency (because
with a single pass algorithm, the results can be output as
soon as the object is completed).

This example illustrates that simply porting or restruc-
turing a software algorithm is insufficient for an efficient
hardware implementation. It is necessary to transform the
algorithm [5] to gain the maximum benefits from the hard-
ware available. The key transformations require a high level
understanding of the algorithm and involve an element of
design. Such transformations and optimisations are beyond
the capabilities of current HLS tools. However, there is noth-
ing preventing the resulting transformed design from being
expressed using a high level language.

4.3 Two dimensional FFT
A two-dimensional FFT can efficiently be implemented in

two stages because the FFT is separable. First, a 1-D FFT is
performed on each row in the image, followed by a 1-D FFT

1-D FFT
on rows

2-D FFT

Transpose
buffer

Transpose
buffer

1-D FFT
on columns

Figure 2: A two dimensional Fourier transform im-
plemented separably as a row transform followed by
a column transform.

Butterfly Butterfly

Butterfly

Twiddle factor

Twiddle factor

N-element temporary store

Butterfly

N
4delayN

2 delay 1 delay

Figure 3: Architectures for 1-D FFT. Top: sequen-
tial in-place algorithm, using on-chip memory for
the temporary store. Bottom: a pipelined radix-22

algorithm.

on each column. This is generally implemented by saving
the results of the first stage into a transpose buffer (see Fig.
2), because the column FFT requires data from all of the
rows. Similarly a transpose buffer may also be required on
the output if a row-streamed output is required.

For the 1-D FFTs, HLS should enable design space ex-
ploration within each FFT allowing a mix of parallel and
pipelined stages to be explored for the implementation. Since
each row is processed independently, HLS should also be
able to infer that multiple rows can be transformed in par-
allel (at the expense of increased resources). However, the
size of the transpose buffers means they will need to be im-
plemented using external (to the FPGA) memory and the
memory bandwidth for loading and saving the data will ulti-
mately limit the processing speed. Design space exploration
can optimise hardware utilisation for the available band-
width. Such exploration is much easier to perform using
HLS than RTL synthesis.

However, given standard software implementations of the
FFT where the FFT is performed in-place on data in mem-
ory, HLS is likely to infer a variation of the architecture
shown in the top panel of Fig. 3. It is unlikely to infer the
pipelined FFT algorithm (bottom panel of Fig. 3 [34]) un-
less the algorithm has been very carefully written to imply
such a structure. If a radix-2 algorithm is coded, it will not
infer the more efficient radix-22 algorithm (which has half
the number of complex multiplications).

Even so, this is still only part of the problem. As men-
tioned, the transpose buffer will need to be located in ex-
ternal memory. The problem comes when this is stored in
dynamic RAM (DRAM). Modern synchronous DRAM [15]
is structured in rows, with only one row accessible at a time.
Before accessing a row, it must first be activated (the con-
tents transferred from internal capacitor storage into a set
of parallel sense amplifiers). Once activated, random access
to any address within the row is permitted. Finally, the row
must be pre-charged, which transfers data back to the inter-

137

Physical address space

Physical address space

Address mapping

Image address

Image address

Row address

Row address

Row

Row

Bank

Bank

Column address

Column address

Column

Column

Figure 4: DRAM address mapping. Top: typical in-
terleaved DRAM address space. Middle: worst case
example – successive rows are in the same memory
bank. Bottom: example address map for solving
this problem.

nal capacitor storage and pre-charges the column lines for
the next read. In practise, it is a little more complex than
this, with the memory divided into multiple banks. One row
may be open within each bank, enabling the activation and
pre-charge overhead to be hidden by interleaving the mem-
ory such that at the end of a row the next logical address
is in a different bank. Normally, much of this complexity is
hidden by the memory controller.

Accessing the image along the rows is generally straight-
forward, as burst mode can efficiently access (for reading or
writing) successive locations on the same memory row. The
overhead in moving from one memory row to the next can
be hidden through interleaving.

Accessing by column, however, can incur considerable over-
head from activating and pre-charging successive memory
rows within the same bank. In the worst case, when suc-
cessive image rows correspond to different physical memory
rows within the same memory bank (as shown in Fig. 4),
the overhead cannot be hidden, and the available memory
bandwidth can be reduced by over 80% in the worst case.
HLS tools are generally unaware of this issue, as the prob-
lem depends on both the length of the FFT and also the
structure of the physical memory chips (which is hardware
dependent).

This can be alleviated (and this overhead hidden) by care-
ful mapping of the logical image address to a physical ad-
dress. One such mapping is shown in Fig. 4. Some of the
image row bits are mapped into the column address space
to ensure that multiple successive image rows are within the
same memory row. This allows multiple accesses within an
open row before the bank is switched. A consequence is that
some of the image column bits are mapped into the row ad-
dress space, and multiple memory rows need to be opened
to read or write an image row. A second optimisation is to
combine some of the row address bits with the column bits
in selecting the bank. This ensures that when traversing a
column, successive image rows will not be in the same bank.
This allows the next bank to be opened in advance, hiding
the activation overhead.

To maximise memory bandwidth, it is necessary to use
burst mode to free the control (address) bus, enabling the
activation and pre-charge commands to be issued in parallel
with data transfer. In this way the overhead is hidden with-
out affecting data throughput. This is natural when access-
ing the image by row, however when accessing the images

by column, it may be necessary to access two or more suc-
cessive columns (depending on data width) to enable burst
mode to be used. If multiple columns are not processed in
parallel, then then they can be buffered (cached) in on-chip
memory. This may increase the latency slightly, but enable
the maximum throughput to be maintained.

Note that such a memory mapping scheme must be de-
signed, and cannot be inferred by current HLS tools. It
may also be necessary to have finer control over the memory
controller (or design a custom controller to incorporate the
mapping).

5. SUMMARY
While using high level synthesis can provide significant

advantages for rapid development and design space explo-
ration, it is no substitute for careful design. It is still essen-
tial to consider the hardware being built, and treat the HLS
tool as a hardware description language and not as software.

The operations within a software based image processing
environment have been optimised for CPU based implemen-
tation. Simply recompiling that algorithm will give rela-
tively poor performance. It is necessary to restructure the
algorithm to enable HLS to identify and exploit the paral-
lelism. HLS is good at exploring the design space through
partial loop unrolling and pipelining. This works well for low
level image processing operations where the control struc-
ture is relatively simple. However, for intermediate-level op-
erations (for example connected components analysis) HLS
is not able to redesign the algorithm to make it more suit-
able for FPGA implementation. Such tasks are still up to
the developer.

HLS can be used to represent such redesigned algorithms,
and enable more compact and efficient coding than RTL cod-
ing. High level code is easier to write, because the algorithm
control is implicit within the language constructs, and does
not require explicitly designing the separate control logic.
This also makes high level code easier to read and maintain,
and verification at the higher level is also significantly faster.

In conclusion, HLS offers many benefits over conventional
RTL implementation for FPGA based design. However, sim-
ply using a high level language does not alleviate the need
for appropriate hardware design.

6. REFERENCES
[1] I. Alston and B. Madahar. From C to netlists:

Hardware engineering for software engineers? IEE
Electronics and Communication Engineering Journal,
14(4):165–173, 2002.

[2] D. Bailey. Chain coding streamed images through
crack run-length encoding. In Image and Vision
Computing New Zealand, 6 pages, 2010.

[3] D. G. Bailey. Design for Embedded Image Processing
on FPGAs. John Wiley and Sons (Asia) Pte. Ltd.,
Singapore, 2011.

[4] D. G. Bailey. Image border management for FPGA
based filters. In 6th International Symposium on
Electronic Design, Test and Applications, pages
144–149, 2011.

[5] D. G. Bailey. Invited paper: Adapting algorithms for
hardware implementation. In 7th IEEE Workshop on
Embedded Computer Vision, pages 177–184, 2011.

138

[6] BDTI. High-level synthesis tools for Xilinx FPGAs.
Technical report, Berkley Design Technology Inc.,
2010.

[7] A. Benkrid and K. Benkrid. HIDE+: A logic based
hardware development environment. Engineering
Letters, 16(3):460–468, 2008.

[8] D. Boland and G. A. Constantinides. A scalable
approach for automated precision analysis. In
International Symposium on Field Programmable Gate
Arrays, pages 185–194, 2012.

[9] M. Bramberger, J. Brunner, B. Rinner, and
H. Schwabach. Real-time video analysis on an
embedded smart camera for traffic surveillance. In
10th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 174–181, 2004.

[10] M. Bramberger, A. Doblander, A. Maier, B. Rinner,
and H. Schwabach. Distributed embedded smart
cameras for surveillance applications. IEEE Computer,
39(2):68–75, 2006.

[11] P. Chalimbaud and F. Berry. Design of an imaging
system based on FPGA technology and CMOS
imager. In IEEE International Conference on
Field-Programmable Technology, pages 407–411, 2004.

[12] J. Cong, P. Zhang, and Y. Zou. Optimizing memory
hierarchy allocation with loop transformations for
high-level synthesis. In 49th Annual Design
Automation Conference, pages 1229–1234, 2012.

[13] G. A. Constantinides, P. Y. Cheung, and W. Luk.
Optimum wordlength allocation. In Symposium on
Field-Programmable Custom Computing Machines,
pages 219–228, 2002.

[14] D. Crookes, K. Alotaibi, A. Bouridane, P. Donachy,
and A. Benkrid. An environment for generating FPGA
architectures for image algebra-based algorithms. In
International Conference on Image Processing,
volume 3, pages 990–994, 1998.

[15] B. Davis. Modern DRAM Architectures. PhD thesis,
2001.

[16] F. Dias, F. Berry, J. Serot, and F. Marmoiton.
Hardware, design and implementation issues on a
FPGA-based smart camera. In First ACM/IEEE
International Conference on Distributed Smart
Cameras, pages 20–26, 2007.

[17] S. A. Edwards. The challenges of synthesizing
hardware from C-like languages. IEEE Design and
Test of Computers, 23(5):375–383, 2006.

[18] M. Fingeroff and T. Bollaert. High Level Synthesis
Blue Book. Mentor Graphics Corporation, 2010.

[19] Z. Guo, B. Buyukkurt, and W. Najjar. Input data
reuse in compiling window operations onto
reconfigurable hardware. ACM SIGPLAN Notices,
39(7):249–256, 2004.

[20] M. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani,
A. Conti, J. Model, and D. DiSabello. Achieving high
performance with FPGA-based computing. IEEE
Computer, 40(3):50–57, 2007.

[21] C. T. Johnston. VERTIPH: A visual environment for
real-time image processing on hardware. PhD thesis,
2009.

[22] C. T. Johnston and D. G. Bailey. FPGA
implementation of a single pass connected components

algorithm. In IEEE International Symposium on
Electronic Design, Test and Applications, pages
228–231, 2008.

[23] Y. K. Lim, L. Kleeman, and T. Drummond.
Algorithmic methodologies for FPGA-based vision.
Machine Vision and Applications, 24(6):1197–1211,
2013.

[24] N. Ma, D. Bailey, and C. Johnston. Optimised single
pass connected components analysis. In International
Conference on Field Programmable Technology, pages
185–192, 2008.

[25] W. Meeus, K. V. Beeck, T. Goedeme, J. Meel, and
D. Stroobandt. An overview of today’s high-level
synthesis tools. Design Automation for Embedded
Systems, 16(3):31–51, 2012.

[26] W. Meeus and D. Stroobandt. Automating data reuse
in high-level synthesis. In Conference on Design,
Automation and Test in Europe, 4 pages, 2014.

[27] R. Mosqueron, J. Dubois, and M. Paindavoine.
High-speed smart camera with high resolution.
EURASIP Journal on Embedded Systems,
2007(Article ID 24163):8 pages, 2007.

[28] I. Page. Closing the gap between hardware and
software: Hardware-software cosynthesis at Oxford. In
IEE Colloquium on Hardware-Software Cosynthesis
for Reconfigurable Systems (Digest No: 1996/036),
pages 2/1–2/11, 1996.

[29] A. A. H. B. A. Rahman, R. Thavot, M. Mattavelli,
and P. Faure. Hardware and software synthesis of
image filters from CAL dataflow specification. In 2010
Conference on Ph.D. Research in Microelectronics and
Electronics, 4 pages, 2010.

[30] A. Rosenfeld and J. Pfaltz. Sequential operations in
digital picture processing. Journal of the Association
for Computing Machinery, 13(4):471–494, 1966.

[31] J. Sanguinetti. Understanding high-level synthesis
design’s advantages. EE Times Asia, pages 1–4, 26
April 2010.

[32] W. Savage, D. Garrett, S. Rawat, and O. Gunasekara.
Panel discussion: Who drives whom? High-level
synthesis or IP reuse? In Design Automation
Conference, 2014.

[33] M. Schmid, N. Apelt, F. Hannig, and J. Teich. An
image processing library for C-based high-level
synthesis. In 24th International Conference on Field
Programmable Logic and Applications, 4 pages, 2014.

[34] S. Sukhsawas and K. Benkrid. A high-level
implementation of a high performance pipeline FFT
on Virtex-E FPGAs. In IEEE Computer society
Annual Symposium on VLSI, pages 229–232, 2004.

[35] F. M. Vallina and J. R. Alvarez. Using OpenCV and
Vivado HLS to accelerate embedded vision
applications in the Zync SoC. XCell Journal,
83:24–30, 2013.

[36] P. Wills. The hardware design of a smart camera for
the robot soccer environment. BE(Hons) thesis, 1999.

[37] F. Winterstein, S. Bayliss, and G. A. Constantinides.
High-level synthesis of dynamic data structures: A
case study using Vivado HLS. In International
Conference on Field Programmable Technology, pages
362–365, 2013.

139

