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Abstract: Sign language segmentation breaks a continuous sentence into its basic lexical units  
by detecting word boundaries. For robust recognition, the majority of direct segmentation 
approaches exploit these inter-sign pauses in a stream of hand gestures to demarcate word 
boundaries. Recent attempts to segment a continuous discourse exploit the constancy or 
directional variations of sign parameters (mainly spatial parameters). The delayed absolute 
difference (DAD) signature of hand positions provides means for analysing the segmentation 
features like pauses, repetitions and directional variations in a unique tool. In this paper,  
a DAD-based pause detection algorithm has been described. The performance of this 
deterministic algorithm is compared with three segmentation approaches. All the experiments and 
comparisons are done using the subjective annotation by 15 native New Zealand Sign Language 
(NZSL) signers. The proposed algorithm correctly and consistently detected the various lengths 
of pauses as compared to the existing segmentation approaches. 
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1 Introduction 

Segmentation is an important stage of any recognition 
system, in which a candidate object is extracted out of its 
background and recognition algorithms are applied on a 
reduced dataset. Segmentation can be viewed as a low cost 
classification that reduces the search space for high cost 
complex algorithms. In vision-based sign language 
recognition, signing articulators (the hands and face)  
are extracted out of an entire scene using different 
appearance-based methods and categorised by their 
position, shape and orientation. Similarly, in gesture 
segmentation (also known and referred as word or sign 
segmentation) individual gestures are demarcated in a 
continuous stream and then only the data for valid signs are 
matched with their model. This resembles speech parsing, 
where disjoint speech units are detected by the silence 
periods between them. In continuous sign segmentation, 
apart from the trajectory information of hand gestures, there 
are a few other unaddressed spatio-temporal cues to mark 
the sign boundaries. Some of them include: a sudden change 
in articulator’s direction, the sign repetition and a change in 
non-manual signs. An effective methodology for gesture 
segmentation should utilise most of these features to detect 
where a valid sign starts and ends. In this paper, the existing 
appearance-based direct segmentation techniques will be 
reviewed. 

Section 2 gives the background of the research problem 
and reviews several existing segmentation schemes 
followed by our proposed algorithm for detecting pauses in 
Section 3. We compare the DAD-based algorithm with 
other three approaches on an annotated New Zealand Sign 
Language (NZSL) database in Section 4. Conclusions and 
future work on the proposed scheme is discussed in  
Section 5. 

The specific contribution of this paper is the 
implementation of DAD-based segmentation scheme which 
is a 2-pass algorithm for detecting pause features in a 
continuous discourse and comparing its performance with 
three other approaches using a natural sign language dataset. 

2 Word segmentation 

Sign language is a visual language and its discourse 
comprises a sequences of gestures in which lexical 
references are encoded into multiple channels, called 
manual sign components. These are the basic gesture 
parameters like hand shape, movement, orientation, and 
location. Most of the existing segmentation approaches 
model the temporal characteristics of these gesture 
parameters. These methods are called direct methods as sign 
boundary inferences in these approaches are independent of 
any contextual or grammar model. On the other hand, an 
indirect boundary demarcation approach interlinks itself 
with the recognition stage and a decision is made  
on the basis of maximising the score of a matched model 
(Alon et al., 2009). Stochastic models can be categorised as 
hybrid approaches for sign segmentation which transforms 

all the ambiguities into probability distributions using a 
large number of training samples along the contextual 
references from sign recognition. Due to the scarcity of 
annotated data (Dreuw et al., 2010) direct segmentation 
approaches are preferred over indirect ones. 

2.1 Segmentation features 

Gesture’s trajectory is considered to be the most significant 
component of a continuous discourse which accounts for 
maximum temporal segmentation. Most of the existing 
direct and indirect models utilise the 2D or 3D trajectories 
and their temporal derivatives (velocity and acceleration) as 
their features (Han et al., 2009). These approaches are 
analogous to silence or pause detection-based speech 
segmentation, where local minima define the word’s end 
points. Kong and Ranganath (2010) presented a direct 
trajectory segmentation method on 27 sentences with 
minimal velocity and maximum directional angle change. 
The reported accuracy is 88% with 11.2% false alarm when 
initial segmentation is subjected to a naïve Bayesian 
classifier. Other approaches focus on the combined 
movement trends along with other features over a specific 
interval of time. 

2.1.1 Pause-based segmentation 

In most of the direct segmentation methods, pause is 
considered as the main segmentation feature which is 
defined by holding a signing articulator at same position for 
a specific duration of time. In other forms of an artificial 
pause, signing articulators are brought back to a defined 
neutral position or are taken out of the signing space. To get 
a pause feature, an articulator’s spatial parameters x, y and z 
coordinates are monitored to be qausi-stationary for a 
defined interval of time and that interval shows the length of 
a pause. Time references of the pause segment (start and 
end) provide clue about the proximity of preceding and the 
following gestures respectively. Pause features are so 
prominent that almost every direct segmentation approach 
used them in one or another way. Wang et al. (2001) 
proposed a segmentation scheme based on minimum hand 
velocity and larges directional variations. Another word 
segmentation method makes use of the trajectory curvature 
along with the articulator velocity (Gibet and Marteau, 
2007). Decision about the boundary point was made by 
measuring the product of hand velocity with the trajectory 
curvature. Walter et al. (2001) presented a hybrid approach 
which combines the pause and orientation discontinuity for 
the segmentation of connected gestures. Kahol et al. (2004) 
and Priyamvada et al. (2004) use hierarchical activity 
approach where physical parameters like force, kinetic 
energy and articulator momentum were representing the low 
level gesture activity. Kong and Ranganath (2010) proposed 
a phoneme transcription approach in which a combination 
of pauses and directional variation is utilised. Unfortunately 
all of these schemes were tested under ad-hoc setup and 
none was verified through any segmentation benchmark 
corpus containing a reliable ground truth. Nevertheless it is 
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clear that the efficacy of these schemes heavily relies on the 
robustness of pause detector which all the time references 
when articulator was in a resting state. Figure 1 shows the 
position parameters of a gesture in form of plots. The plot at 
the bottom of Figure 1 detects all the candidate points 
(shown as red circles) which indicate when the articulator 
was merely stationary. This velocity-based scheme forms 
the basis of the other pause-based approaches. 

Figure 1 Sign parameters and velocity-based segmentation  
(see online version for colours) 
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In another approach (called TVP method), the number of 
time varying parameters is tracked and monitored. Here, 
instead of monitoring the velocity component all the 
available parameters are utilised including the orientation, 
shape, finger configuration, etc. If the number of stationary 
parameters is below a certain threshold, the articulator is 
considered to be in a state of a pause. For example, Figure 2 
shows the TVP method where red markers show the 
instances where three out of the three randomly selected 
signing parameters are quasi-stationary. 

Figure 2 TVP segmentation using three parameters (see online 
version for colours) 
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Movement hold model (MH model) (Liddell and Johnson, 
1989) is another frequently used approach which describes 
two major classes of sequential segments in a stream of 
gestures. One is called movement segments, where some 
aspect of the signer’s configuration undergoes some change 
including change in handshape, a hand movement, or a 
change in hand orientation. Holds are the pauses during 
which signing articulator is stable for a specific period of 
time and are helpful to provide an anchor for the 
articulatory features (Vogler, 2002). Figure 3 shows the 
boundary detection through movement hold model which 
spots the start of a hold segment as a boundary point for the 
movement (lexicon to be recognised). All of these pause-
based schemes have their advantages and disadvantages if 
analysed from different aspects. 

Figure 3 Movement hold model-based segmentation (see online 
version for colours) 

 

2.1.2 Signature-based segmentation 

Li and Greenspan (2005, 2007, 2011) proposed a gesture 
segmentation approach which visualises the boundary 
between two gestures in the form of distinct patterns called 
motion signatures. These signatures are formed by 
accumulating the time-varying distances between the 
signer’s external contours to a central location inside the 
body (Figures 4 and 5). 

The signature patterns between the test sequences 
containing a boundary are compared to a gesture model 
through dynamic time warping. Figure 6 shows the model 
matching with a test sequence using dynamic programming. 

The motion signature-based scheme is a generative 
algorithm that matches a pair of test gestures with the 
motion signatures of compound models in its vocabulary. 
Motion signature segmentation is helpful in small 
applications but due to the large number of possible gesture 
pairs required for training and recognition, this scheme 
becomes unsuitable for large vocabulary applications. 
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Figure 4 Normalised distance for the signer’s pose (see online 
version for colours) 

 

Figure 5 2D/3D motion signatures form by accumulating the 
time-varying shape features (see online version  
for colours) 

 

Figure 6 Signature matching (see online version for colours) 

 

2.2 DAD signature 

In addition to the trajectory information of a gesture, there 
are a few other unaddressed spatio-temporal cues to detect 
the word boundaries. For example, a sudden change in an 
articulator’s direction, the articulator’s repetition and a 
change in non-manual signs could be exploited for an 
improved segmentation. Delayed absolute difference (DAD) 
signature (Khan et al., 2011) consolidates the deterministic 
boundary features used in many direct segmentation 
approaches, we have earlier discussed. DAD signature is a 
2D distance matrix that quantifies the degree of intra-signal 
disparity without adding any mathematical bias (Khan et al., 
2011). Absolute differences of each signal’s sample with its 
previous values transforms the sign parameters into  
a more useful representation (DAD signature) where the 
segmentation features are encoded into distinctive  
patterns. These features represent gesture pauses, directional 
variations and sign repetitions which are found at the 
boundary of a sign. 

DAD is a time domain analysis technique. It preserves 
the temporal information about prominent signal trends, 
such as where it changes significantly, when and for how 
long it stays stationary or which signal segment has 
repetitions. The DAD signature reduces the entire search 
space into a few manageable natural features that can be 
utilised for subsequent classification. A qualitative 
investigation of a few DAD segmentation features is 
presented in Khan et al. (2011). 

In order to derive the segmentation features from a 
continuous stream of spatio-temporal parameters, it must be 
transformed into a DAD representation (DAD matrix) using 
equation (1): 

( , ) [ ] [ ] 1:DAD n d X n X n d d D= − − =  (1) 

where X is the continuous input stream of spatio-temporal 
parameters and D is a delay window. For any sample of X 
(at time n), equation (1) results in a vector of length D, 
comprising of its differences with D previous samples. 
Accumulation of all the DAD vectors results in a DAD 
matrix or signature shown in Figure 7. 

Figure 7 DAD matrix 

X[1] X[2] X[3] X[4] 

    
– |X[2]–X[1]| |X[3]–X[2]| |X[4]–X[3]| 
– – |X[3]–X[1]| |X[4]–X[2]| 
– – – |X[4]–X[1]| 

3 DAD’s pause feature 

Movement pauses in a sign stream provide the most 
prominent clue for any temporal segmentation of a 
continuous sentence. Most of the existing trajectory 
segmentation approaches exploit the inter-sign pause as a 
marker for sign boundaries (Yang et al., 2009; Viblis and 
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Kyriakopoulos, 2000; Kulkarni and Lokhande, 2010; Wen 
et al., 2004). Correct and robust detection of inter-sign 
pause ensures better recognition by eliminating the 
coarticulation issues (Khan et al., 2011; Yang et al., 2009; 
Kulkarni and Lokhande, 2010; Brentari and Wilbur, 2006; 
Ong and Ranganath, 2005). By definition, during a pause, 
the articulators are in the same position for several frames. 
Therefore, during the pause segment, the difference in 
articulator positions will be small, or approximately zero. In 
the DAD signature, the number of small values in each 
column will be equal to the time since the start of the pause. 
As this grows with the duration of the pause, the 
characteristic pattern produced by pauses within the DAD is 
a right triangle, as shown in Figure 8. The triangle appears 
as black, because of the small changes of articulator 
position during the pause. It is demarcated on the 
hypotenuse by the motion preceding the pause differing 
from the position during the pause. In a similar manner, the 
triangular pattern is demarcated at the end by the changes in 
position resulting from the resumption of motion after the 
pause. The length of pause feature determines how long a 
sign component remains in hold (not moving). A larger 
pause duration means there is sufficient break given at the 
end of a sign which increases the confidence of the 
segmentation. 

Figure 8 DAD signature and segmentation features (see online 
version for colours) 
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3.1 Derivation 

Suppose a quasi-stationery segment (pause) of length K at 
point n = nΔ ends with a significant break in a continuous 
sign parameter stream (as shown in Figure 9). The DAD 
vector at any time n inside the pause segment comprises of 
K – (nΔ – n) approximately zero values which correspond to 
its maximum resemblance with K – (nΔ – n) previous 
samples (the black triangle in the DAD matrix). The sum of 
all the DAD matrix values within this pause triangle stays 
very small until it reaches a point n = nΔ + 1 which is 
dissimilar to the previous samples in the analysis window. 
Equation (2) is the sum of the differences within a pause 
triangle of length K ending at n = nΔ: 

( ) ( )
1 1

, ,
n

n d

kK

n d
k k

Tri n K DAD n k K kΔ Δ
= =

= + −∑∑  (2) 

Figure 9 Triangular pause feature 
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After the trailing edge of triangle (n = nΔ + 1), the DAD 
vector sum should abruptly increase as compared to the 
triangular region because the articulator has begun to move 
again, resulting in an increase in disparity. Equation (3) 
calculates the strength of edge column at n = nΔ + 1. 

( ) ( )
1

, 1,
d

K

d
k

Col n K DAD n kΔ Δ
=

= +∑  (3) 

The end of the triangular uniformity defines the time when a 
pause finishes. The smaller the value of the Tri(nΔ, K), the 
better the quality of the pause, because there is less change 
in articulator parameter during the interval. 

On the other hand, the larger the value of Col(nΔ, K), the 
more certainty there is that the pause has ended. Therefore, 
a good figure of merit for the end of pause would be the 
difference of these two quantities: 

( ) ( ) ( ), , ,FOM n K Col n K Tri n KΔ Δ Δ= −  (4) 

Local maxima of FOM greater than zero are considered as 
candidate pauses. Rather than investigate candidate pauses 
for all values of K, the observation is made that the end of a 
long pause will also be detected as the end of a shorter 
pause (with a smaller value of K). This enables the 
determination of the pause duration to be decoupled from 
the detection of the pause. The smallest pause length of 
interest K = minK  is used to find all the candidate points of 
pause segments using equation (4). 

Once all the candidate transitions are known, the length 
of pause can be estimated by expanding the size of the 
column at each candidate point and comparing its strength 
with the strength of the adjacent triangle of same height. At 
the optimum length of pause, the FOM in equation (4) 
would drop below zero and decrease rapidly because the 
sum of non-zero values after K will increase due to the large 
number of dissimilar values along the triangle’s hypotenuse. 
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3.2 Algorithm 

DAD’s-based pause detection is therefore a two pass 
algorithm which initially searches best features in time 
(along the n axis) and then searches along the delay axis in 
the second phase to determine the length of the pause. 
Overall the strategy uses the following three steps. 

a for a given D, derive the DAD matrix of the articulator 
signal, X[n] 

b the DAD is scanned along the time axis, using the 
transition equation (4) to find all the points n = nΔ 
where a triangle of a length Kmin ends 

c for every detected candidate point (n = nΔ) K is 
expanded to find the optimum length of the pause 
feature by growing Kd = Kmin + ΔK. 

3.3 Feature extraction 

As a first step of the segmentation process, gesture signal 
(shown in Figure 8) is subjected to the DAD transform over 
a delay window (D) which is directly related to the signing 
speed. Studies show that the average signing frequency does 
not undergo large variation for different signers and stays 
nears 2.5 signs per second over a long interval of signing 
(Chapman et al., 2007; Reppy, 1993). This means, over an 
interval of one second (30 frames) we can expect at least 
one transition between two adjacent lexemes. For this 
reason, we use a constant delay window (D = 30) in all our 
experiments. 

Once the signature has been acquired, the next step is to 
find all the candidate pauses. A minimum pause length is 
chosen (Kmin = 6) based on the assumption that a pause of 
less than 1/5th of a second should be treated as an 
intermittent pause and be negligible. This eliminates all the 
small triangles that are formed due to the tiny pauses at the 
local minima leaving all other pauses that appear in form of 
large size triangles. This is achieved using equation (4) in 
which the FOM is calculated for all time samples which 
find the ending points of all the triangles of height equal to 
the Kmin. In Figure 10, the symbols ⊕  indicate all the 
candidate pauses, where a pause of minimum length is 
detected with the FOM having a local maximum greater 
than 0. 

Figure 10 FOM of all candidate points of pause length > = Kmin 
(see online version for colours) 
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Figure 11 Optimal feature length at n = 87 (see online version 
for colours) 
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Once all the candidate boundary points have been estimated, 
the length of each quasi-stationary interval in calculated in 
the second pass. This not only gives the prominent 
segmentation features but also locates the start of every 
pause segment. Figure 11 shows the estimation of the 
optimum value of the pause length for a random candidate 
point (n = 87). The expanding area of the triangle at the 
candidate point exceeds its column count over the 
associated triangle which drops the FOM below zero at  
Kd = 9. This implies that the length of this pause is Kd–1 
frames. Once the ending frame of a pause segment and its 
length is available, we can simply estimate the start of each 
pause and store them into a segmentation feature vector for 
further classification. 

4 Dataset and experimental validation 

In our experiments, the pause-based segmentation 
algorithms are tested using annotated NZSL videos 
containing continuous sentences from daily life. A study of 
existing databases (Martinez et al., 2002; Fagiani et al., 
2012; Dreuw et al., 2008) suggests that the main focus of 
available databases is to encompass the linguistic dynamics 
through enhancing the vocabulary size and also adding a 
large number of native signers. These efforts focus on the 
reliability of lexical annotation by a careful transcription. 
Nevertheless, explicit annotations of a natural discourse 
may provide the right dataset to evaluate the performance of 
a segmentation scheme. The compilation of such a 
segmentation database is challenging due to the high degree 
of uncertainty found in a subjective annotation. Figure 12 
represents the boundary points identified by four different 
observers after watching a video three times. The significant 
variability shown here is typical from human segmentation, 
even by those experienced in sign language (Kahol et al., 
2004; Badler et al., 2008). 
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Figure 12 Segmentation inconsistencies due to the subjective 
annotation by four experienced signers (see online 
version for colours) 
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For our experiments, all the subjective annotations are 
assumed as the reliable observations for the localisation of 
all the inter-sign pauses found in a sentence. Each 
observation validates the pause segments detected by the 
four segmentation schemes (minimal velocity, MH model, 
TVP, and DAD). Accuracy of any methods is assessed 
through the number of true positive (TP) and false positives 
(FP). As graphically explained in Figure 13, TP is the 
number of pause samples correctly detected by the human 
annotations when they fall within the detected pauses while 
the FP is the detected pause samples for which there is no 
boundary observation. In other words, they are unexpected 
results. False negative (FN) are the missing pause samples 
that should have been added in the pauses. 

 

Figure 13 Graphical presentation of the comparison factors  
(TP, FP and FN) 
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Figure 14 Performance comparison of four segmentation 
schemes (see online version for colours) 

 

We have implemented three direct segmentation schemes; 
velocity-based method, MH model and TVP method using a 
subset of the segmentation dataset which is related to the 
pause-based segmentation. These sentences have observable 

inter-sign pauses and there are nearly 1,000 annotations  
(by 15 different signers) as an attempt to get a reliable clue 
about the boundary points. Total sign samples are around 
1,500 which roughly contain 70 sign boundaries. 

The bar graph shown in Figure 14 compares the 
performance of the existing techniques with the proposed 
DAD scheme. As discussed in the review section, the 
velocity-based segmentation method selects most of the 
intermittent pauses and clearly has better TP as compared to 
both of the MH model and the TVP method. While  
DAD-based scheme has the maximum TP in terms of the 
number of pause samples observed as the segmentation 
points. It detects over 800 samples as part of different pause 
segments which are marked by the human annotations. 
Other than the MH model, all other methods exhibit similar 
behaviour towards the detection of the intermittent pauses 
that are too small to be the segmentation pauses. MH model 
controls this by setting up a criterion about the minimum 
pause length to be considered for the hold sequence. For the 
given dataset, DAD has the least samples which are 
segmentation points but remained undetected by the 
algorithm. Velocity-based model has slightly less number of 
undetected segmentation point as compared to the MH 
model and TVP because it picks a maximum number of the 
candidate points. As shown in Figure 15, the velocity-based 
method covers most of the segmentation points by 
generating the maximum candidates (173 points for 
detecting the 70 pauses). DAD-based scheme however 
generates a moderate number of the candidate segmentation 
features (88 candidates to detect all the pauses) as compared 
to the velocity-based and TVP methods (107 candidates). 
MH model extracted the smallest candidates (47) than all 
other scheme due to its hold length criterion that must be 
fulfilled after a significant movement. 

Figure 15 Total candidate features generated by each method 
(see online version for colours) 
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4.1 Discussion 

Most of the existing continuous sign language segmentation 
schemes are the derivatives of the minimal velocity-based 
pause detection which is preferred because of its good 
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performance (high TP) with less complexity. On the other 
hand, it selects a large number of candidate points which 
causes a high false alarm while in operation. Velocity-based 
scheme is ideal for a system working under a constraint 
situation where the signer must ensure the insertion of a 
sufficient pause between every adjacent signs. MH model is 
a further extension of the velocity-based model in which the 
decision of the boundary point relies on the criteria that 
defines the movement and hold sequences. Unlike the 
velocity-based scheme, MH model considers a random 
pause segment as a candidate point only if it is sufficiently 
long and immediately followed by a significant movement. 
These two conditions significantly drop most of the non-
candidates and only select the most probable boundary 
points. By tweaking the movement hold criteria through 
their parameter thresholds, this method can outperform any 
velocity-based scheme over the optimum number of 
candidate features, TP, and FP. 

Unlike the velocity and MH model, TVP method does 
not rely only on the movement component of a gesture. It 
integrates all the available sign parameters like shape, 
fingers state, or any gyroscopic parameters of a gesture to 
find the segmentation point. This method replicates the 
velocity-based methods on every parameter stream and 
monitors the time instances where majority of them are on 
hold. This means, TVP method can be setup to mark a 
boundary point of a sign where its shape and orientation 
parameters are stagnant while it is still in the due motion. 
Similar to the TVP method, DAD is not limited only to the 
gesture trajectory and can be independently applied on any 
component that is available in form of a continuous stream. 
It locates the time instances where the sign parameters are 
qausi-stationary (pauses), no matter what component 
(trajectory, hand configuration, orientation, etc.) is being 
processed. It detects two aspects of a pause; the total 
duration of a pause and where it ends. The duration of pause 
controls the degree of confidence about that boundary and 
reduces the chances of a false alarm. Our experiment shows 
that DAD-based segmentation results are quite promising 
for detecting the inter-sign pauses with minimum gesture 
alteration or exaggeration. Of course it performs the best if 
the signer signs smoothly and pauses between two signs. 

5 Conclusions and future work 

DAD signature transforms a continuous stream of sign 
parameters into a manageable set of segmentation features 
which reduces the search space for the boundary detection. 
We have implemented a DAD-based pause detection 
approach and tested the existing velocity-based 
segmentation scheme along with the MH model and the 
TVP over a natural dataset. Experimental results of the 
existing schemes through a segmentation database highlight 
the merits and demerits of all the existing schemes. Through 
our comparison, we proved that the DAD’s segmentation 
features are deterministic and they exhibit better and 
consistent performance (in TP, FP, FN and total candidates) 
than the existing segmentation methods. 

DAD-based pause detection is a deterministic method 
for getting all the real pauses in a signal. In future it can be 
used for the evaluation of the subjective annotations which 
is a challenging task in the compilation of a reliable 
segmentation database due to its inconsistencies. In the 
evaluation, all the human annotations will be compared to 
the actual DAD pauses which ultimately model the 
variability of the subjective annotation based on the ground 
truth provided by the DAD pauses. This annotators’ 
assessment can provide a logical basis for accepting or 
rejecting an inconsistent observation. Moreover the same 
evaluation framework can rank the human annotators based 
on their variation to a deterministic boundary point. 

The DAD signature is not exclusive only to the pause 
detection but it has potential to provide a unified platform in 
future where other segmentation features like signal 
repetitions and directional variations can also be analysed. 
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