
Test Bed for Number Plate Recognition Applications

D.G. Bailey*, D. Irecki*, B.K. Lim+ and L. Yang+

*Institute of Information Sciences and Technology, Massey University,
Private Bag 11 222, Palmerston North 5301, New Zealand

+School of Electrical and Electronic Engineering, Singapore Polytechnic,
500 Dover Road, Singapore 139651

D.G.Bailey@massey.ac.nz, BKLim@sp.edu.sg

Abstract

A flexible software based platform for number plate
recognitions applications is described. It breaks the
processing into several explicit modules, with the
implementation for each module provided by a software
plugin using a DLL interface. The modular structure
greatly facilitates the comparison between different
algorithms for a particular step, and allows code to be
reused between applications.

1. Introduction

There are many applications for number plate
recognition. Examples are:

• Border crossing control
• Identification of stole vehicles
• Automated parking attendant
• Petrol station forecourt surveillance
• Red light camera
• Speed enforcement
• Security
• Customer identification enabling personalised

service
For many of these applications, much of the basic

processing remains the same. However there may be
environmental differences that necessitate changing some
of the steps to make the algorithms more robust. Different
countries and states also have different standards and use
different fonts within number plates. These differences
require some steps to be changed for different locales.

For these reasons, it was decided to develop a flexible
test bed that could easily be adapted and allow different
algorithms to be tested. Two initial applications are
currently being considered. The first is petrol station
forecourt surveillance, and the second is an automated
parking lot attendant.

2. Software Architecture

The tasks common to a range of licence plate
recognition applications were identified. To maximise the
flexibility of the recognition system, a modular structure
was chosen, with one module corresponding to each task
or subtask. Seven processing modules have been
identified as being common to all number plate
recognition applications. While not every application will
require every task, they provide a suitable partitioning of
the overall application. The modules define the processing
sequence as illustrated in figure 1. To allow modules to be
interchanged, each module has specified inputs and
outputs for the passing of data. Any additional module-
specific parameters are provided wither through a
configuration file, or through a user-dialog when the
module is initialised. The detailed function of each of the
modules will be described in turn.

Trigger

Image Capture

Vehicle Present

Find Plate

Segment Characters

Recognise

Post-process

Acquisition

Vehicle Identification

Figure 1: Software modules

The first group of modules deal with vehicle and image
acquisition. It obtains the images, and ensures that the
image contains a vehicle.

Trigger: The trigger indicates when an image should
be captured. In many applications, the capture and
processing of images would be activated by a hardware
trigger and this module provides the software interface to

Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications (DELTA�02)
0-7695-1453-7/02 $17.00 © 2002 IEEE

that hardware (for example an inductive loop sensor
within the vehicle lane). In other applications, it may be
inconvenient or impractical to have a hardware trigger. In
this case, the corresponding trigger module would always
return true indicating that images should be captured and
processed for a software trigger.

Image capture: Captures an image from a camera, or
loads a file into the system either from disk or from over a
network. This module interfaces with the specific image
capture hardware or other image source.

Vehicle present: Determines if the current image
contains a vehicle. If a hardware trigger system is used,
this module just returns true, indicating that the hardware
system detected the presence of a vehicle. However, in
systems where a hardware trigger is impractical, this
module effectively provides a software trigger. In such
cases, an effective approach is to compare the current
image with a background image, and detect if there are
significant changes. If a vehicle is detected, processing
then proceeds to the vehicle identification stage, otherwise
the vehicle acquisition stage is repeated.

The next set of modules process the image obtained
from the acquisition stage, and identifies the vehicle that
has been detected.

Find plate: Locates the region in the image that
contains the number plate. The return from this module is
a set of candidate licence plate regions within the input
image. In some applications, this is the first step of the
main processing. In other applications, this step may be
used to control the pan and zoom of the camera to obtain a
higher resolution image of the licence plate.

A number of different techniques can be used for
localising the registration plate, including colour detection
[1], signature analysis [2] and edge detection [3].

Segment characters: Segments the individual
characters in the number plate into separate binary
images. The characters are taken from within the region
provided by the find plate step. Segmentation is usually
governed by size and relative location, with some form of
dynamic thresholding required to minimise the effects of
shadows [4].

Recognise: Performs OCR on each character.
Techniques have been used for this step include template
matching [4], feature matching [5] and neural network
classifiers [6]. Rule based methods may also be used to
help resolve ambiguities, for example between the digit
‘0’ and the letter ‘O’.

The find plate, segmentation and recognition steps are
split into different modules because these steps are often
distinct in many of the algorithms that are used.
Separating the processing into distinct modules allows
different combinations of the techniques to be evaluated.

Post process: The final module provides application
specific processing of the resulting number plate string.

Depending on the application, this may be to save the
image (in security applications), look the plate up in a
database (to identify stolen vehicles, or regular
customers), to start timing or produce an invoice or
account (parking applications), or to issue a traffic
infringement notice (traffic monitoring).

Rather than have all of the modules compiled directly
in with the main program, they have been implemented as
software plugins through dynamic link libraries (DLLs).
This allows the modules to be developed independently,
and be switched easily when refining the algorithms. It
also facilitates code reuse by allowing techniques that
have worked in one licence plate recognition application
to easily be tried in another application.

Application main program

User interface

Plugin
Module

Plugin
Module

Plugin
Module

Plugin
Module

Plugin
Module

…

Figure 2: Plugin structure

The plugin structure is illustrated in figure 2. When the
application main program is run, it automatically loads all
of the DLLs present in the current directory, making the
routines in them available to the main program for
processing.

DLL

D
ire

ct
en

tr
y

po
in

ts

License plate resource

Module
Descriptors

E
nt

ry
th

ro
ug

h
de

sc
rip

to
rLoader

Unloader

Module

Module

Module

Figure 3: DLL structure

The structure of the DLLs is as shown in figure 3. Each
licence plate DLL contains a resource that indicates to the
main program that it contains licence plate modules. The
presence of this resource is checked prior to loading the
DLL. Since each DLL may hold several modules, it also
contains a loader and unloader routine.

The loader provides a descriptor for each module
indicating its name, function, and calling address. This

Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications (DELTA�02)
0-7695-1453-7/02 $17.00 © 2002 IEEE

information allows the main program to select and call the
procedure in the DLL. The unloader frees any resources
that may have been allocated by the routines in the DLL,
and prepares the DLL for being removed from memory.

Multiple implementations of the same module are
placed within menus to allow the modules to be switched
quickly and easily. This provides a simple mechanism for
investigating different algorithms and techniques.
Modules may also be unloaded, recompiled and reloaded
without exiting the main program. This speeds
development of the software because it can be tested and
modified in place, avoiding the reconfiguration each time
the program is run.

The modular software architecture also makes it easier
to save a range of images and transparently test the
operation by simulating image capture through loading the
images from file. Changing from online to offline mode
and back again can be done through a menu selection of
the appropriate image capture module. Working in off-line
mode allows different algorithms to be easily compared
on the same set of images, facilitating a direct comparison
of the effectiveness of each algorithm.

The main program also provides the user interface,
which displays the status of the system and all of the
intermediate images required during development to
evaluate the effectiveness of the modules in a particular
application or scenario.

3. System Testing

To demonstrate the system and test the initial
algorithms, a test site is currently being established on the
campus of Singapore Polytechnic. This test site is situated
on the entrance of an outdoor car park. Initial tests will be
performed during daylight under favourable weather
conditions, with hardware triggering to indicate the
presence of a vehicle. Once this system is successfully
demonstrated, the various restrictions will be lifted. The
eventual goal is a fully automated all-weather parking
attendant using software based vehicle detection.

Initial testing has identified incompatibilities between
different compilers. Many of these problems are
minimised by using a common module for allocation and
deletion of all data structures. In the initial system, the
modules are as follows:

Trigger: Hardware based, using an inductive sensor.
For software based triggering, a dummy module that
always returns true will replace this.

Image capture: Two modules here: the first captures
an image from a camera, and the second loads an image
from disk for system testing.

Vehicle present: For hardware triggering, this is a
dummy module. For software triggering, this will compare
the image with a background for vehicle detection. If no

vehicle is detected, this would update the background
image, to enable varying light conditions to be handled.

Find plate: The initial method is based on detecting
clusters of strong edges with an aspect ratio of that of
licence plates [4].

Segment characters: Within the region of interest, a
morphological filter is used to automatically select a
dynamic threshold. Noise is removed based on object size,
shape, and alignment [4].

Recognise: Fuzzy template matching will be used to
identify normalised characters [4].

Post process: During initial testing, the images and
plate identification will be saved for evaluating system
limitations. Later, post processing will control a barrier
arm, allowing only authorised vehicles into the park.

4. Summary

A modular structure will facilitate the testing and
developing of software for vehicle number plate reading
applications. The breakdown of the system, and the plugin
mechanisms are described. The flexibility and modular
nature of the system simplifies development and testing,
and allows modules developed for one application to
easily be reused in other applications.

5. Acknowledgements

The authors would like to acknowledge financial
support from the Asia 2000 Foundation Higher Education
Exchange Program, and from Technology New Zealand
through a Technology for Industry Fellowship.

6. References

[1] B. H. Cho & S. H. Jung, “Non feature-based vehicle plate
recognition system using neural network”, Proceeding of ITC-
CSCC 98 International Conference, Korea, Vol. 2, 1065-1068,
July 1998.
[2] J. Barroso, J. Bulas-Cruz & E. L. Dagless, “Real Time
Number Plate Reading”, 4th IFAC Workshop on Algorithms and
Architectures for Real-time Control, , Portugal, April 1997.
[3] J. R. Parker & P. Federl, “An approach to licence plate
recognition”, Computer Science Technical reports, University of
Calgary, Alberta Canada, Vol. 591-11, October 1996.
[4] D. Irecki & D. G. Bailey, “Vehicle registration plate
localization and recognition”, Proceedings of the Electronics
New Zealand Conference, ENZCon’01, New Plymouth, New
Zealand, September 2001.
[5] J. Barroso, A. Rafael, E. L. Dagless & J. Bulas-Cruz,
“Number plate reading using computer vision”, IEEE Intern.
Symposium on Industrial Electronics, ISIE’97, 1997.
[6] R. van Heerden and C. Nieuwoudt, “Automatic number plate
segmentation and recognition”, Department of Electrical and
Electronic Engineering Reports, University of Pretoria, 1998.

Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications (DELTA�02)
0-7695-1453-7/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

