
Efficient Representation and Decoding of Static Huffman Code Tables
in a Very Low Bit Rate Environment

Nick B. Body and Donald G. Bailey
Institute of Information Sciences and Technology, Massey University,

Palmerston North, New Zealand.
E-mail: Nicholas.Body.1@uni.massey.ac.nz, D.G.Bailey@massey.ac.nz

Abstract
The lossless entropy coding used in many image coding
schemes often is overlooked as most research is based
around the lossy stages of image compression. This
paper examines the relative merits of using static
Huffman coding with a compact optimal table verses
more sophisticated adaptive arithmetic methods. For
very low bit rate image compression, the computationally
simple Huffman method is shown to be competitive and
often superior to adaptive algorithms. We present a
method of efficiently representing an optimal Huffman
table using delta coded symbol bit lengths. The decoding
of the bitstream can also be accelerated by using table
lookup operations.

1. Introduction

This paper offers two improvements to the efficiency
of use of static Huffman coding in a very low bit rate
image codec (coder-decoder) environment. This
environment requires the bit rate of the codec to be
minimised. The implementation speed also needs to be
high to minimise any delay in a system.

Most modern image compression methods use a lossy
coder to give good compression, followed by some form
of lossless entropy coding performed on the resultant
symbol streams to minimise the total output file size [1].
The lossless coding stage typically compresses the symbol
stream by about 2:1. It is this lossless coding step that this
paper concentrates on, rather than the lossy compression
step, although we do make use of our knowledge of the
form of the symbol stream [2].

In a very low bit rate environment, there are three key
areas to be considered when choosing an entropy coder.
The coder must closely match the real entropy of the data
stream, it must have an efficient implementation to
minimise coding delay and the coder must minimise the
amount of overhead information to be transmitted to the
decoder. Various schemes to implement entropy coding
make trade-offs between these key areas.

• Fixed Huffman tables are not optimal for modelling
the true entropy of a particular instance of a data
stream. Therefore, although there is no overhead re-
quired in sending a fixed table, the use of such tables
is sub-optimal, and limits the compression obtained.

• Sending an optimal Huffman table creates a sig-
nificant overhead in a very low bit rate environment.

• By contrast arithmetic coding more closely models the
entropy of a data stream. Unfortunately the
implementation speed of the bitstream encoding
operation is reported to be significantly slower than
Huffman coding and the symbol statistics still need to
be sent as overhead [3].

• Both adaptive Huffman and adaptive arithmetic
algorithms have the advantage of not requiring the
overhead of sending a code table. Neither algorithm is
as optimal in compression as static coding where the
statistics of the symbol stream are stationary. This is
because it takes several hundred symbols to be coded
before the entropy model converges to that of the
static method [3]. In a very low bit rate environment
this is particularly significant where there may only be
a few thousand symbols to be encoded per image.
While adaptive arithmetic coding is more compact
than adaptive Huffman coding, the computational
overheads are significantly higher because of the need
to maintain a cumulative histogram to perform the
adaption.
These trade-offs led to the use of a static (non-

adaptive) Huffman coding in this application. This
ensures that a near optimal model of the entropy of each
compressed image is used and the implementation is
computationally efficient. The issues are then how to
compactly represent the Huffman code table to minimise
overheads, and how to efficiently decode the resultant
coded symbol stream.

2. Representation of the Huffman table

It is well known that a Huffman table can be uniquely
represented by a list of symbol value and frequency count
pairs [3]. In many applications the symbol values may

0-8186-8821-1/98 $10.00 Copyright 1998 IEEE

range from 0 to 255 and it may be more efficient to just
send the frequency count values for all 256 possible
symbols in sequence rather than using a list of pairs. This
is efficient when most of the possible symbols are used in
the data stream to be coded. If however say only a third
of the symbols are used and they are clumped together
then a ranged frequency count method can be
advantageous [3]. For each range of symbols in the
distribution, the ranged method uses two 8 bit numbers to
define the end points of the range. This is then followed
by the symbol frequency counts within each of the ranges.
Such a clumped distribution is common when coding
quantised transformed image data that has been run length
coded. As can be seen from table 1 a) and b), the
overhead associated with this approach can be significant
with low bit rate coding.

Rather than send the symbol frequencies, only the
symbol bit-lengths need to be transmitted to be able to
reconstruct the table. The known order of the symbols
and their bit lengths allows both the coder and decoder to
assign the same bit pattern to the symbols, as described
later. Since the symbol lengths are related to the
logarithm of the reciprocal symbol frequency, fewer bits
are required to represent the lengths. Highly compressed
images generally do not require more than 16 bits for the
longest Huffman code symbol. It can be proved for
symbol streams with less than 6764 symbols, that no
symbol will have a bit length of greater than 16 bits [3].
In practice, symbol streams of up to 100,000 symbols did
not require symbol codes exceeding 16 bits.

A simple code for the bit lengths is a 5/1 code:
Zero bits0
1 to 16 bits 1nnnn

Since the zero bit symbols are clumped, we now can
gain further compression by run length coding the zero bit
symbols. This gives a simple 5/range code:

Zero bits0nnnnnnn
1 to 16 bits 1nnnn

 These approaches approximately halve the table
overhead compared to transmitting the frequency
distribution (table 1 c) and d)).

Finally, the frequency distribution of symbol bit
lengths is not uniform as it is related to the branching
structure used to represent the Huffman probability tree.
This allows the table to be compressed further by using an
entropy coding stage on the table. The difficulty here is
that the symbol length distribution is quite data dependent,
preventing a fixed table from being used, and the
overhead of providing the optimal table is significant.
However, because the original frequency distribution
varies reasonably smoothly, codes for similar symbols
have similar lengths. This allows the image dependence
to be removed by delta coding the non-zero bit lengths.
Tests revealed that the distribution of the delta coded bit
lengths does not vary significantly between images
allowing a fixed table to be used for these. In over 100
symbol streams tested, all of the deltas were between -5
and +5. However, to be safe, an escape code was
provided to explicitly specify the symbol length in the rare
occurrence that this range is exceeded. A code was
reserved for isolated unused symbols (those with 0 bits),
and two codes for identifying short runs (2 to 9) and long
runs (10 or more) of unused symbols since short runs
appeared relatively frequently. This resulted in another
factor of 2 reduction in the overhead of sending the
optimum table (see table 1 e)). Table 2 shows the fixed
Huffman table used to transmit the delta coded symbol
length table.

3. Coding results

The relatively low overhead associated with
transmitting the optimum Huffman table allowed us to
make use of the knowledge of the image statistics to
achieve further lossless compression. The symbol stream
from a typical wavelet codec consisted of 2 components -
an AC quad-tree section, and the DC approximation
image. These had quite different characteristics: the DC
section was broader and did not contain run length codes.
We were able to make a further 3 to 5 percent net gain by
coding the AC and DC components independently, and
transmitting the optimum Huffman tables for each section.

Table 1. Comparison of overheads associated with various Huffman table coding strategies

Single stream Splitting stream into AC & DC components
Huffman table

encoding method
Table
size
(bits)

Total file
size

(bits)

Overhead as
% of file size

AC table
size

(bits)

DC table
size

(bits)

Total table
size
(bits)

Total file
size

(bits)

Overhead as
% of file size

 a) 10 bit AC, 4 bit DC 2560 20461 13.0 % 2560 1024 3584 20672 17.0 %
 b) 10 bit AC, 4 bit DC
 ranged

1256 19157 6.6 % 884 276 1160 18248 6.4 %

 c) 5/1 coding 648 18549 3.5 % 512 472 984 18072 5.5 %
 d) 5/range coding 620 18521 3.3 % 429 307 736 17824 4.1 %
 e) Delta coding 384 18285 2.1 % 262 179 441 17529 2.5 %

0-8186-8821-1/98 $10.00 Copyright 1998 IEEE

0 50 100 150 200 250
0

 20

 40

 60

 80

 100

 300

 500

 700

 900

1100

0 50 100 150 200 250
0

2

4

6

8

10

12

14

a) AC symbol frequency histogram b) DC symbol frequency histogram

0 50 100 150 200 250
0

5

10

0 50 100 150 200 250
0

5

10

c) AC symbol bit lengths d) DC symbol bit lengths

0 50 100 150 200 250
0

5

10

 0 5 10 15
0

5

10

15

20
AC

0 5 10 15
0

5

10

15

20
DC

e) Reordered AC symbol bit lengths f) Histogram of symbol bit lengths

0 50 100 150 200 250
-10

-5

0

5

Long runs
Isolated unused

Short runs
End of table Long runs

0 50 100 150 200 250
-10

-5

0

5

Isolated unused

Short runs
End of table

g) Delta coded AC symbol bit lengths h) Delta coded DC symbol bit lengths

i-k) Histograms of delta coded symbol bit lengths

- 1 0 - 5 0 5
0

1 0

2 0

 a b c d

- 1 0 - 5 0 5
0

1 0

2 0

 a b c d

- 1 0 - 5 0 5
0

2 0

4 0

6 0

 a b c d

i) Lena AC j) Lena DC k) Average combined AC & DC bit lengths
from 100 compressed symbol streams

Escape Symbols: a = Isolated unused, b = End of table, c = Long runs, d = Short runs

Figure 1. Statistics from Lena image at Quantiser 4 setting, 256 2 pixels, 4462 AC symbols & 256 DC symbols

0-8186-8821-1/98 $10.00 Copyright 1998 IEEE

Symbol Bits Code
Isolated unused 4 1100
End of table 7 1111100
Long runs 8+7 11111110nnnnnnn
Short runs 4+3 1101nnn
Explicit length 12+5 111111111111nnnnn
Delta -5 12 111111111110
Delta -4 9 111111110
Delta -3 7 1111110
Delta -2 4 1110
Delta -1 3 101
Delta 0 1 0
Delta +1 3 100
Delta +2 5 11110
Delta +3 7 1111101
Delta +4 10 1111111110
Delta +5 11 11111111110

Figure 1 shows the process of compressing the
optimum Huffman tables for a 2562 pixel Lena image
wavelet coded to give 4462 AC and 256 DC symbols.
The compressed image is shown in figure 5. The symbol
frequency histograms, a) and b), show that the two
distributions are significantly different. These
distributions are Huffman coded to give the lengths of
each symbol, c) and d). Since the AC section contained
both symbols and run-length symbols, the symbols were
reordered, e), to give a tighter delta distribution. The
histograms of the symbol bit lengths, f), show that the
distributions are significantly different between the AC
and DC components. There is also a similar variation
between images and between the output from different
quantisers when the same image is used. The bit lengths
are then delta coded, g) and h), to give similar looking
tight distributions, i) and j). The fixed table for coding the
delta coded symbol lengths (table 2) was derived from the
statistics of 100 symbol streams. These were made of
from 10 different images each at 3 different resolutions
(5122, 2562, and 1602) using a range of quantisers. The
average delta distribution is shown in figure 1 k).

To verify our claims that adaptive methods are not as
suitable as using the optimal table in a very low bit rate
environment, we compared the resultant file sizes for 100
symbol streams. As expected, the adaptive arithmetic
method always outperformed the adaptive Huffman
method. On average, the optimum Huffman method and
the adaptive arithmetic method performed similarly,
although our method tended to do better for smaller
symbol streams (less than about 8000 symbols) and the
adaptive arithmetic method was better for larger symbol
streams (figure 2). A detailed breakdown of the
overheads is shown in figure 3 for the Lena image. The
overheads for the adaptive methods are the effective
overheads obtained by comparing the file size if the

distribution was known exactly with that obtained by
using adaption. The overhead results from the coder
building up a model of the symbol stream.

4. Assigning bit patterns from symbol lengths

Our method relies on being able to generate a unique
code for each symbol based solely on knowing the symbol
length. The procedure is as follows:
1) Sort all the symbols (S) in ascending order of symbol

length (L)
2) Where several symbols have the same length, these

are sorted in symbol order
3) Starting with top of the list (the shortest symbol)

assign the code of all zeros
4) For each symbol down the list, assign the next

available code in increasing sequence

Lena Quantiser 4

-2.5

0

2.5

1000 10000 100000

Number of symbols encoded

D
iff

er
en

ce
 a

s
a

pe
rc

en
t o

f f
ile

 s
iz

e

 Table 2. Delta table code allocation

Figure 2. Difference in file sizes between optimal
Huffman and adaptive arithmetic coding as a
function of the number of symbols encoded

Entropy
Integer
code

overhead

Huffman
bitstream

16920 + 168 17088
Effective
adaption
overhead

+ 739
Table

overhead+ 441 + 735
Effective
adaption
overhead

17659 17529 17823

Adaptive
arithmetic

Optimal
static

Huffman

Adaptive
Huffman

Figure 3. Detail of overheads involved in entropy coding
the Lena Quantiser 4 symbol stream,

all numbers are in bits

 100 Training
 Symbol Streams
 10 Lena Symbol
 Streams

optimal Huffman
method superior

adaptive arithmetic
method superior

0-8186-8821-1/98 $10.00 Copyright 1998 IEEE

L S Code
2 E 00
3 A 010
3 I 011
3 T 100
4 N 1010
4 O 1011
4 R 1100
4 S 1101
5 C 11100
5 D 11101
5 L 11110
6 H 111110
6 U 111111

Figures 4 a) and b) show an example of the method
applied to a small set of symbols. This method assigns a
unique code to each symbol, and also has the advantage
that the longer codes are at the end of the table. This
makes the decoding more efficient.

5. Decoding

A computationally efficient method for decoding
Huffman bitstreams is proposed. Normally each bit
received is used to guide the traversal of a decoding tree
similar to that shown in figure 4 a). Our method uses a set
of hierarchical lookup tables as shown in table 3. Three
bits from the bitstream are used at a time to form an index
into the root table (Table-1). For most of the frequently
occurring symbols, this initial index will resolve the
symbol and the number of bits consumed. For less
frequent codes the index will result in a second indexing
operation into a child table with the next three bits from
the bitstream used as the index. The consumed bits are
removed from the bitstream prior to decoding the next
symbol.

In practice, rather than using three bits for an index, we
use eight bits, giving a 256 element table. This allows up
to eight bits to be removed every lookup, rather than one
bit per lookup using a conventional tree structure.

Index Table-1 Table-2 Table-3 Table-4
000 E(2) N(4) R(4) C(5)
001 E(2) N(4) R(4) C(5)
010 A(3) N(4) R(4) D(5)
011 I(3) N(4) R(4) D(5)
100 T(3) O(4) S(4) L(5)
101 Table-2 O(4) S(4) L(5)
110 Table-3 O(4) S(4) H(6)
111 Table-4 O(4) S(4) U(6)

6. Conclusions

The simplicity of using static Huffman coding for the
lossless stage of image compression at very low bit rates
is appealing. This paper reveals that this computationally
efficient method when combined with a compact Huffman
table representation is competitive when compared with
more sophisticated methods such as adaptive arithmetic
coding. The implementation speed of Huffman coding
and decoding is significantly faster than adaptive and
arithmetic methods.

7. Acknowledgements

The authors would like to thank Professor R.M.
Hodgson and Dr W.H. Page for their assistance in
preparing this paper.

8. References

[1] R.J.Clarke, “Image & Video Coding: Development
and Prospects”, in Proceedings of the first joint Australia
and New Zealand biennial conference, DICTA’97,
IVCNZ’97, Albany, Auckland, New Zealand, pp.1-10,
1997. ISBN 0-473-04947-3.

[2] N.B.Body, W.H.Page, J.Y.Khan & R.M.Hodgson,
“Efficient Mapping of Image Compression Algorithms on
a Modern Digital Signal Processor”, in Proceedings of the
4th Annual New Zealand Engineering and Technology
Postgraduate Students Conference, University of Waikato,
New Zealand, pp.59-64, 1997. ISBN 0-473-04578-8.

[3] M.Nelson & J.Gailly, “The Data Compression Book”,
2nd ed. M&T Books, pp.19-136, 1996.

E

A I T

N O R S

C D L

H U

Table-1

Table-4

Table-
2 Table-

3

 Figure 4. a) Huffman tree with table b) Code
 decoding partitions allocation

Figure 5. Lena image at Quantiser 4 setting, 256 2

pixels, compressed by 30:1

 Table 3. Table partition for decoding

0-8186-8821-1/98 $10.00 Copyright 1998 IEEE

