
147

Electronic Schematic Recognition
Donald Bailey1, Andrew Norman2, and Giovanni Moretti2

1Physics Department and 2Computer Science Department
Massey University
Palmerston North

E-mail: D.G.Bailey@massey.ac.nz, G.Moretti@massey.ac.nz

We demonstrate the feasibility of using image analysis for automatically converting from a scanned
electronic circuit schematic to a netlist of the components and their connections. A preprocessing
stage removes non-components from the image (component label and values). The image is then
segmented to produce a set of graphical primitives (lines, circles, and arrows). The recognition stage
uses rule-based templates to match primitives to components. At present, the software will only
recognise a limited range of components, although the rule-based approach allows the system to be
extended to handle a wider range of component types or styles. The final stage constructs a netlist of
components and their connectivity. Netlists are frequently used to represent electronic circuits for
simulation.

Keywords: electronic schematics, circuit recognition, image analysis, circuit netlists.

1. NEED FOR SCHEMATIC
RECOGNITION

Circuit diagrams, or schematics, are a standard means
of representing electronic circuits. While this format is
excellent for conveying much of the relevant circuit
details in visual form to scientists, engineers, and
hobbyists, it is not able to be readily manipulated or
processed by computers.

Having a circuit in computer useable form is required
for such applications as automated layout of printed
circuit boards, simulating the electrical characteristics
of the circuit, and maintaining a database of circuits or
circuit modules. In all of these, a suitable
representation of the circuit is as a netlist, that is as a
list of components and their interconnections.

This project is examines the feasibility of using image
analysis for automatically obtaining netlists from
circuit schematics in printed form. This process
involves recognising the various electronic component
symbols within the schematic and determining their
connectivity.

Image of
Circuit

Schematic

Output
Netlist

Component
Database

Electronic
Schematic

Recognition
System

Figure 1: Circuit schematic recognition.

2. RELATED WORK

This sort of problem has been considered in various
forms for just about as long as computers have been
used for storing and manipulating documents. Very
early work was concerned with efficient
representation and processing of line drawings in
pictorial form [1]. Much of the more recent document
processing work has concentrated on distinguishing
between mixed text and figures in documents, for
example [2], with optical character recognition of the
text parts now being a reasonably standard operation.
There has been some work done on interpreting
engineering drawings, for example [3] and [4], but
relatively little on processing electronic circuit
diagrams.

Most of the work on recognising electronic circuit
diagrams as concentrated on logic diagrams. There,
the image is broken into graphical primitives which
are then grouped together to form gates, flip flops, and
other logic symbols. Tudhope et al [5] used arcs,
circles, and lines as the primitives, and a recognised
the components using a series of production rules.
Fahn et al [6] considered the segments between the
junction of three or more lines, and used a picture
description language to match the segments forming a
component. Okazaki et al [7] recognised logic gates
based on the characteristic shape of the closed loops
representing the symbol. The closed loops were
classified based on their projections.

Bley [8] segmented electrical schematics using a
picture graph approach. The picture graph is then
parsed to identify dominant horizontal, vertical and
diagonal lines. Collections of lines conforming to
predefined patterns are then clustered together to give
circuit symbols using production rules.

148

3. OUR APPROACH

The circuit schematic needs to be scanned into the
computer before it is processed. For many of our
initial trials, we used a video camera and frame
grabber. This worked well for small circuits, but had
inadequate resolution for larger diagrams. For these, a
flatbed scanner is more appropriate. The resolution
required depends primarily on the thickness of the
lines within the circuit schematic. There should be at
least 2 pixels across each line to prevent them from
becoming broken in subsequent processing. This also
allows any text labels to be recognised and processed
reliably.

3.1 Preprocessing

The scanned image is represented as an array of 8-bit
pixels (figure 2). A significant proportion of the image
conveys no useful information (the empty space
between the components and interconnecting wires).
Preprocessing reduces the volume of data by
arranging it into a more useful compact form.

3.1.1 Background removal. The background of the
image may not be completely uniform because of
variations in lighting. A background image is formed
by using a maximum filter [9], selecting the maximum
pixel value within a scanned 15x15 window. This has
the effect of replacing the dark inked areas within the
image with adjacent background pixels. The original
image is subtracted from this to remove the
background, leaving the lines and text.

3.1.2 Segmentation. The image is then thresholded
using a single global threshold level to segment the
lines and text from the plain paper. After thresholding,
the image is binary with the white pixels representing
the information and the black pixels representing the
background.

3.1.3 Chain code. Chain coding provides a convenient
and compact method of representing binary line
drawings [1]. It works by coding the boundary pixels

between the black and white regions within the image
as a chain of direction codes from one pixel to the
next around the boundary. This process is shown in
figure 3. Each boundary produces a separate chain. By
recording the location of the starting pixel with each
chain, the binary image is able to be reconstructed
exactly from the chain codes.

0

123

4

5 6 7 0070055544343420001
Figure 3. Chain coding a boundary

3.1.4 Separate the text and drawing. Text is used
within circuit diagrams to label components (Q1, C2,
RL), to provide component values (100Ω, 1W) or part
numbers (2N3055, 2N2102), to annotate the circuit
(13.6V, IL, VO) and describe its operation (current
sensor, regulator). While conveying important
information, this text is not directly related to the
component symbols. The processing is simplified by
separating the text from the rest of the image [10].
The simplest approach is to use an area threshold. All
chains which have an area less than this threshold are
considered to be text, and are separated for separate
processing. Figure 4 shows the results of chain coding
and sorting the chains into text and circuit parts. Using
a simple area threshold may also remove parts of
components, for example polarity dots of
transformers, arrows adjacent to LED, and the insides
of terminal nodes. Where necessary, any of these
symbols not recognised as characters may be
reclassified as component parts.

3.2 Extract Circuit Primitives

The chains represent the boundaries of the component
symbols and interconnecting lines. These need to be
regrouped into individual circuit symbols and
interconnecting wires. Our approach is to break the
chains into a set of graphical primitives which are then
grouped to form the components. The graphical

Figure 2. A typical circuit schematic.

149

primitives that we use are line segments, circles, and
arrowheads.

3.2.1 Vectorisation. The first step of this process is to
break the chain into a series of approximately linear
sections. First, each chain is split into two segments at
convenient corners (the points closest to and furthest
from the origin are easy to locate). Each segment is
then successively split into two segments until all the
resulting segments are straight to within a given
tolerance. This process is performed as follows. For a
given segment, a straight line between its two end
points is considered. The point on the chain that
deviates the most from this line is found. If the
deviation is less than the allowed tolerance the
segment is considered straight, otherwise the segment
is split at the point of maximum deviation. This is
repeated recursively until all of the segments are
straight. A tolerance is necessary to prevent diagonal
lines from being broken into very short segments, and
to provide some noise immunity. We found a
tolerance of 1.5 pixels to be about optimal.

3.2.2 Circle identification. Many components or
circuit parts have circles associated with the symbol.
These include transistors, input/output (I/O) nodes,
and junctions. Any circles or circular arcs within the
image will be broken into a series of line segments by
the vectorisation stage. Reconstructing these into
circles simplifies the subsequent component
recognition stage.

By scanning through the list of segments, for each pair
of adjacent segments the radius and central position of
the potential arc are calculated. Arcs with improbable
radius or and inappropriate angle between the
segments are eliminated. Once all possible arcs have
been identified, they are grouped into circles based on
centre location and radius. Those circles which are
represented by a significant proportion of their
perimeter are retained, while the others revert to their
linear segments. The linear segments making up the
circle are deleted, being replaced by the circle
primitive.

Any segments completely inside a circle are likely to
form part of the same component as the circle. These
segments are therefore associated with the circle to
simplify the search when the component is identified.

3.2.3 Vector optimisation. All lines within the image
will produce a pair of parallel segments since the
chain coding process encodes the boundary on each
side of the line. This could be avoided by first
thinning the line to a single pixel thickness before
chain coding [3], however, the thinning step would
cause problems with solid regions such as diodes or
arrows within transistors. The vector optimisation step
replaces each parallel pair with a single segment.

Long lines may be broken into shorter segments
because of noise or scanning nonlinearities. Such
segments are rejoined if they are collinear to within 5
degrees.

3.2.4 Identification of arrows. To make the
identification of transistors and diodes easier, it is
necessary to detect arrow heads. Arrows consist of a
group of three segments forming an acute isosceles
triangle. The set of segments is searched to find all
such triangular features. Where the triangle is
equilateral, the base of the arrow head is defined as
the segment which has another segment closest to its
centre. This identification is important, because many
of the arrows are equilateral triangles.

Figure 5 shows the graphical primitives (circles, lines
and arrows) that were extracted from the example
image.

3.3 Component recognition

The most complex stage is recognising the
components from the primitives. We used a series of
rules to define the configuration of primitives making
up each component. This approach was chosen
because it allows the rules to be modified or extended
(to recognise new components) without changing the
recognition software. The rules are stored as a text file
containing multiple component definitions.

Figure 4. Preprocessed image. Text is shown in grey, with the circuit in black.

150

3.3.1 Component definitions. Each component
definition starts with the name of the component in
square brackets, followed by a series of rules and an
output definition (as illustrated in figure 6).

[Diode] Component name
ARROW (B,P) Critical points
ARROW (P) MIDLINE 90 Rule statement
EMIT B P Output definition

Figure 6: An example of a component definition

Any given component may have multiple component
definitions, where each separate definition can be used
to recognise the component independently of the
others. This allows variations in components to be
recognised, for example a resistor may be represented
by a rectangular box, or as a series of 7 angled lines.

Rules within the set define the following:
• length of a line
• relationships between pairs of lines
• radius of a circle
• number of connections to a circle
• direction of an arrow within a circle
• relationship between an arrow and a line
• relationship between a line and a component

3.3.2 Critical points. Every component in the image
has a series of critical points, whether they are the
ends of a resistor, or the terminals of a transistor.
Many of the rules have a mechanism for extracting
these critical points, so that they may be output with
the component identifier. During the recognition
stage, the critical points are simply positions within
the input image.

3.3.3 Rule search. Each component definition is
checked in turn. When searching for a component,
each rule in turn is matched to the remaining
primitives. If a match is found, those primitives are
added to the component and the next rule is examined.
If any of the rules is unable to be matched for the
current component, the search backtracks to check for
alternative matches to previous rules. When the

component definition is completely satisfied, the
component is given a unique identifier, and is added
to the component output list. After all components
matching that definition have been found, the search
proceeds with the next component definition. The
search continues until every component definition has
been examined, or there are no primitives remaining
to be matched.

3.3.4 Construct the netlist. The component
recognition phase includes component definitions for
junctions and interconnecting wires. These are
removed and replaced by netlist node numbers in the
following manner:
1. Two wires connected together are replaced by a

single wire.
2. Two junctions connected by a wire are combined

together, and the wire eliminated.
3. A junction connected to an I/O node is eliminated,

being replaced by the I/O node.
4. A wire between a junction and a component is

eliminated, being replaced directly by the junction.
5. A wire between two components is replaced by a

junction.

This process eliminates all interconnecting wires, and
replaces interconnected junctions with a single
junction or I/O node. The final step is to assign a node
number to each junction, and output the netlist. The
netlist for this example is shown in table 1.

Table 1: The resulting netlist.

Figure 5. Graphical primitives extracted from the schematic.

I/O nodes: I1 1
I2 2
I3 3

Resistors: R1 1,4
R2 5,6
R3 5,2
R4 2,3
R5 2,3

Capacitors: C1 4,3
C2 2,3

Transistors: T1 4,1,5
T2 6,4,2

Zener diodes: Z1 3,4

151

4. EXTENSIONS

In this preliminary study, we have made no attempt to
process the text associated with the schematic. For the
netlist to be complete, it needs to be augmented with
component values and part descriptions. This process
is complex as it not only requires an optical character
recognition stage but also recognising whether an item
of text is associated with a single component (a
component label, R3; a component modifier, + on
electrolytic capacitor; a component value 1.2kΩ), a
group of components, or is a stand-alone annotation.
A rule of associating text to the nearest component
would work for most schematics, although where
components are drawn close together, this could lead
to errors.

The current system only has rules for recognising the
most common components. To be useful, it needs to
be extended to recognise a wider range of
components. This can be accomplished by adding
further component definitions to the rule file.

The current rule set is not sufficient to be able to
recognise some classes of component. Rules are
required for combining symbols or components based
on proximity. This would allow, for example,
discrimination between related components such as
standard diodes, light-emitting diodes, and
photodiodes.

The rules are very specific in what they allow.
However, there are a variety of different standards of
representing many components. For example, a
variety of different transistor symbol styles is shown
in figure 7. To recognise all of the variations, one
approach would be to have different component
definitions for each standard. An alternative is to have
rules which allow the optional inclusion of graphical
primitives.

Figure 7. Transistor symbols from a range of sources.

5. CONCLUSIONS

Our preliminary study has demonstrated the feasibility
of automatically constructing a basic netlist from an
electronic circuit schematic. Further work is required
to augment the netlist with component values, and to
extend the range of components that can be
recognised.

6. REFERENCES

[1] H. Freeman, Computer Processing of Line
Drawing Images, ACM Computing Surveys, 6,
57-97 1974.

[2] P.J. Bones, T.C. Griffin, C.M. Carey-Smith, A
Projection-based Algorithm for Document
Image Segmentation, Proceedings of the 5th NZ
Image Processing Workshop, 87-93, 1990.

[3] C.C. Han, K.C. Fan, Skeleton Generation of
Engineering Drawings via Contour Matching,
Pattern Recognition, 27 (2) 262-275, 1994.

[4] Y.H. Yu, A. Samal, S. Seth, Isolating Symbols
from Connection Lines in a Class of Engineering
Drawings, Pattern Recognition, 27 (3) 391-404,
1994.

[5] D.S. Tudhope, J.V. Oldfield, A High-Level
Recognizer for Schematic Diagrams, IEEE
Computer Graphics and Applications 3 (3) 33-
40, 1983.

[6] C.S. Fahn, J.F. Wang, J.Y. Lee, A Topology-
Based Component Extractor for Understanding
Electronic Circuit Diagrams, Computer Vision
Graphics and Image Processing 44 (2) 119-138,
1988.

[7] A. Okazaki, T. Kondo, K. Mori, S. Tsunekawa,
E. Kawamoto, An Automatic Circuit Diagram
Reader with Loop-Structure-Based Symbol
Recognition, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 10 (3) 331-
341, 1988.

[8] H. Bley, Segmentation and Preprocessing of
Electrical Schematics Using Picture Graphs, 28
(3) 271-288, 1984.

[9] Y. Nakagawa and A. Rosenfeld, A Note on the
Use of Local MIN and MAX Operations in
Digital Picture Processing, IEEE Transactions
on Systems, Man and Cybernetics, 8, 632-635,
1978.

[10] R. Kasturi, S.T. Bow, W. El-Masri, J. Shah, J.R.
Gattiker, and U.B. Mokate, A System for
Interpretation of Line Drawings, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 12 (10) 978-992, 1990.

