
VIPS - a digital image
processing algorithm

development environment

D G Bailey and R M Hodgson”

The major requirements of an image processing algorithm
development system are presented. VIPS, a Vax-based
image processing system developed at the Wniversity of
Canterbury, New Zealand, is described and dismissed in
terms of algorithm development. Some of the applications
of ViPS are listed.

Keywords: image processing, aigorithm development

Digital image processing involves using a computer to
apply a sequence of mathematical operations to a
numerical representation of an object*. The desired
result may be, for example, the measurement of the
length of a feature, an enhanced image for display or
even a decision on whether an object meets certain speci-
fications. The application of digital image processing
techniques to any particular problem may be split into
two broad phases2. The first phase is to determine the
image processing algorithm, i.e. the sequence of mathe-
matical operations required to achieve the desired result;
the second phase is to develop appropriate hardware
to implement the solution. In some applications, the
system that is used to develop the algorithm may be
used in the final implementation.

Algorithm development is much like carpentry. All
of the various image processing operations are the tools
used by the algorithm development specialist to work
on the input image, which represents the raw material.
The main difficulty in algorithm development is that
there is little or no theory that may be used to guide
the selection of the best operation from several that
may be suitable3. In practice, the operations are chosen
heuristically from a large number of possible operations.
This is done by trying one operation and, if it performs
unsatisfactorily, trying another until the desired result
is obtained. For this reason, an image processing system
used for algorithm development must be highly inter-

Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106, USA
*Department of Production Technology, Massey University,
Palmerston North, New Zealand

active, and have available a wide range of operations.
Another of the problems often encountered in develop-
ing algorithms relates to the ‘trap of the two-legged
existence theorem’4. This is the assumption that because
humans can easily perform a particular image processing
task, then so can a computer vision system. In fact the
only truly general-purpose image processing ‘machine’
available is the human being. With the current state
of the art, most image processing problems are only
solvable if they are sufficiently specific and restricted.

Once an algorithm has been developed to solve an
image processing problem, the next step is to determine
the hardware required to implement the solution, Indus-
trial situations place a severe time restriction on image
processing problems, typically of the order of one second
per measurement or classi~cation cycle. The advent of
VLSI and the use of parallel processing will widen the
range of industrial tasks that may be tackled by speeding
up the more time expensive operations. For this reason
the resultant computer vision system is usually dedicated
to the specific application for which it was developed.

VIPS, standing for Vax image processing system, has
found considerable application in the algorithm develop-
ment phase for a number of problems. In this paper,
the VIPS hardware and software are described and com-
pared with a range of other image processing systems.
Some examples are given of the applications that have
been investigated using VIPS.

HARDWARE ASPECTS

A block diagram of the VIPS hardware is shown in
Figure 1. The host computer system is a Vax 1 l/750
central processing unit. This is used to execute the
software implementing the various commands that are
available. Important peripheral devices are as follows.

l A terminal is part of the interactive interface between
the user and the system. All image processing
commands are entered and all nonpictorial results

176

026228856/88/03 176-09 $03.00 @ 1988 Butterworth & Co. (Publishers) Ltd

image and vision computing

VJX !I4 Frame
1’!750 cl store

Vtdeo signal

i

Figure 1. VIPS hardware schematic

of any operations performed are returned via the
terminal.

0 A DMA device (in this case a Digital Equipment
DRl 1 W) enables rapid transfer of image data be-
tween the host computer and the image capture and
display subsystem.

The main component of the image capture and display
subsystem is a Matrox MIP-512 image processing
board. This controls the acquisition and display of
images of the following resolutions: 128 x 128 pixels,
256 x 256 pixels and 512 x 512 pixels. Image input
to the MIP-5 12 is software selectable from one of four
cameras or other RS170 or RS330 standard video
sources. During image capture, the input video signal
is digitized to 8 bit. Image output is to a 14 inch (34.5
cm) high-resolution colour monitor, with the MIP-512
providing a false colour mapping from the image in
its display buffer. The other component of the image
capture and display subsystem is a slave 86/12 micro-
processor which initializes the MIP-512 and controls
the transfer of data between the Vax and the MIP-512.

SOFTWARE ASPECTS

VIPS was developed on the basis of experience gained
in developing an earlier low-resolution system5.6. VIPS
was developed initially to assist with research on the
properties of Rank and Range filters’+*, and was later
extended to become a general facility for algorithm
development.

VIPS is a command-based interactive image process-
ing system. This means that the commands are run as
procedures called from a parent program rather than
directly as individual programs under the host computer
operating system. Such command-based systems mini-
mize the difficulty of maintaining the data structure
(temporary images and other variables) from one com-
mand to the next, since this data structure may consist
of a series of dynamic variables maintained by the parent
program. A further advantage is a reduction in the time
required to access each command. The disadvantages
of such systems are that more program memory is
required, leaving less memory for image and other data,
and that the host system commands are difficult to ac-
cess, The first disadvantage is only signi~cant when high-
resolution images (greater than 1024 x 1024) are being
processed; this is because of the use of a virtual memory
architecture on the host computer. In VIPS the second
problem is overcome by providing a command that gives
the user access to the host system commands.

VIPS provides a wide selection of image processing
commands and operators (see Appendix 1 for a listing).
This is essential in an algorithm development environ-
ment, as the best command for a particular task is more
likely to be chosen. Info~ation on all of these
commands and their associated parameters is available
online through the HELP command, or by using a
special HELP key on the terminal. Any errors resulting
from incorrect command use are reported using the Vax
standard error handling format.

It often transpires that an image processing operator
that is not supplied with a development system is
required in a particular application. In this case, or when
new techniques are being investigated, new operations
must be developed. Any system used to develop
algorithms to solve image processing problems must
have the ability to add new commands quickly and
easily2. VIPS enables commands to be developed in a
high-level language such as PASCAL. To minimize
problems in developing and accessing new commands,
VIPS provides a three-layer command structure, as
illustrated in Figure 2. At the innermost layer are the
core commands; these are the commands that are pro-
vided initially with the system. At the next layer are
the public user commands; these commands are user
developed commands that have been installed into a
particular system, and are therefore available to users
at that location. At the outermost layer are the private
user commands which are private to individual users;
it is at this level that new commands are developed.
This structure enables new commands to be developed
easily and used as though they are part of VIPS, allowing
the command to be tested in conjunction with other
VIPS commands. Users can add their own private com-
mands which remain separate from other users’ private
commands. The independence of private commands
from the VIPS core and public user commands speeds
command development, especially when several users are
working on different applications. When commands
have been debugged, and are required by other users,
they may be installed as public user commands.

Commands are accessed by the system through a hash
addressed9 command table. Hash addressing speeds
command access by making the command table contents

Load private user commands.

Load public user
commands

Command
table

Load core _
c)

Ek
commands

‘g z
=:
rng -aI
PZ Command
- ._

execution

Figure 2. Three-&per command structure of VIPS

~016 no 3 august 198% 177

addressable. It also enables users to define command
abbreviations easily by adding the definition into the
hash table as a pseudocommand. This allows VIPS to
be customized by providing abbreviations for commands
or command lines that are frequently used. Each entry
in the command table contains the address of the pro-
cedure implementing the command and information on
all of the parameters used with the command. The com-
mand table is loaded at run time, when VIPS is first
called. This enables VIPS to call private and public user
commands without having them specifically linked to
the command parsing section of the parent program.
Thus when user commands are present, the user program
loads the addresses and parameter information into the
command table and then calls the VIPS command
parsing loop. When the command is parsed, the com-
mand address saved in the command table enables the
correct command to be called directly. The parameter
information in the command table enables the parent
program to check parameter types, and to detect whether
any essential parameters have been left out. Optional
values may be provided for some of the parameters if
no value is specified in the command line.

system, VIPS provides a command timing facility. This
returns the actual computer time used for each command
in an algorithm. This information may then be used
to locate processing bottlenecks and, in the case of time
critical applications, to identify the commands in the
algorithm that may require special-purpose hardware
in the final implementation.

A variety of variable types are provided, from general-
purpose variables such as integers and real numbers to
structures used more specifically for image processing
such as vectors and histograms. This large variety
expands the capability of VIPS command sequences by
enabling interaction between commands of more than
just images. Images may be of any size to allow the
resolution, and hence the execution speed, to be tailored
to suit the problem. The system also allows rectangular
subimages of arbitrary size to be selected and operated
on. One of the features of VIPS is that all user variables
are accessed symbolically, rather than by location,
allowing the user to concentrate on the image processing
problem. In practice this means that images and other
variables may be given meaningful names, making
algorithms easier to develop and simplifying algorithm
modification at a later date.

The VIPS software may be accessed at three different
levels, as illustrated in Figure 3. At the lowest level,
it consists of a library of image processing procedures
and support utilities. This enables the procedures
implementing existing commands to be called from user
commands, or even incorporated in other programs. At
the next level up, these procedures are available as
commands which may be invoked interactively from
VIPS by the user. At the highest level, the commands
form the basis of an image processing language. The
commands are combined together as programs which
implement all or parts of image processing algorithms.
Features such as looping and branching are provided
to allow flexibility in the command sequence which
previously required user evaluation. Loop structures also
provide the means for repetitive testing of new com-
mands and techniques. All of the looping and branching
constructs necessary lo for a language are available for
use from within VIPS programs.

VIPS is interactive, allowing the results of one opera-
tion to be examined before the next operator is chosen.
A useful guide for interactive systems is that each opera-
tion should take less than 15 second$. If the operations
regularly take longer than this, the time delay becomes
uncomfortable for the user, and it becomes difficult for
the user to maintain concentration. For an image reso-
lution of 128 x 128, simple operations such as generating
test images, adding images and measuring areas take
less than two seconds. More computationally intensive
operations such as filtering and Fourier transformation
take 5-10 seconds. The execution time of most VIPS
commands is proportional to the image size. This means
that the processing time required for a 256 x 256 image
will be about four times that for a 128 x 128 image.
Simple operations remain within the 15 second guideline,
but other operations such as filtering become slow. For
this reason, all processing is performed using the
minimum resolution and image size that is practical for
the application. The time taken by each command also
increases as the host computer becomes more heavily
used, but remains within the 15 second guideline for
most commands operating on images within a resolution
of 128 x 128 or less.

VIPS is written in Vax PASCAL, which contains a
number of extensions to standard PASCAL. This para-
graph describes the features of VIPS that make use of
these nonstandard extensions of PASCAL. Vax VMS sys-
tem services are used extensively for online documen-
tation (HELP) and error handling, and to reduce the
programming effort required to give information in a
form similar to that of other packages that may be
encountered on a Vax system. System services are also
used to access device drivers for the terminal and the
image capture and display subsystem. These features
may be rewritten in standard PASCAL provided that
appropriate drivers are available. All images used in
VIPS are stored in arrays; however, standard PASCAL

does not allow dynamic allocation of arrays of arbitrary
size (i.e. the size is not known until run time). To over-

VIPS command

Image processing

Since the host computer is a time shared, multiuser Figure 3. Different levels of access to VIPS

178 image and vision computing

come this limitation, image memory is allocated in blocks
of powers of two, and a descriptor of the array is main-
tained which describes the size and indexing of the array.
Vax PASCAL allows this descriptor to be passed to an
implementation procedure, and the array (arbitrarily
sized) is accessed correctly from within the procedure.
Because of the method used to pass images to com-
mands, VIPS is not readily transportable to other than
Vax systems. (The authors have operated VIPS on Vax
I l/750 and MicroVax II systems.)

COMPARISON WITH OTHER
ENVIRONMENTS

A large number of systems have been developed and
are described in the literature. These range from
dedicated hardware (e.g. the Clip series of processors
and others”) to general image processing Languages
(such as L'~ or PIXAL13) or subroutine libraries (e.g.
Spideri4). These systems were all designed for different
purposes, and have advantages over the other systems
in accomplishing those purposes. For this reason, the
comparison made here is not absolute, but rather in
terms of the ability of each system to provide an environ-
ment for developing algorithms for specific image pro-
cessing applications. VIPS is not compared exhaustively
with each system, but systems are selected from the many
available that are representative of a class in order to
make a comparison of a particular feature common to
a range of systems. The comparison is arranged in terms
of features or concepts that are particularly important
for an algorithm development environment.

The nature of algorithm development virtually
requires a command-based system such as VIPS.
Although subroutine libraries such as Spideri provide
a wide range of operations, there is no convenient
method of examining the effects of different operations
in an interactive manner. This is also true for image
processing languages, unless they also provide an inter-
active interface. At the other extreme are the menu-
driven image processing systems such as those using per-
sonal computers (PCs) as the host (e.g. ImageLab and
ImageTool15). These provide a very interactive means
of selecting operations, but the specification of para-
meters is a problem for complicated operations.

Most command-based systems, including menu-driven
systems, allow users to define a macro consisting of
a sequence of commands, but often few, if any, branch-
ing constructs are available. This is especially true of
early systems such as Susie16 or Ucips5.6. At the other
extreme are languages where loops and branches are
provided. In this sense. VIPS could be likened to an
interpreted language similar to BASK. Systems based
around FORTH, LISP or PROLOG have similar properties
(e.g. Provision* ‘). Commands may be entered inter-
actively while an algorithm is being developed, and com-
mands may be combined into an image processing
program where the branching constructs provided by
VIPS allow considerable flexibihty. The effectiveness of
this type of system in making it easy for nonspe~iaIists
to develop algorithms is demonstrated each year by final-
year Bachelor of Engineering project students working
on image processing projects at the University of
Canterbury, New Zealand.

Almost all image processing systems that have been
developed recently have available a wide range of opera-
tions, from low-level image-to-image operations to those
using higher-level data structures. The most notable
exceptions to this are the PC-based menu-driven systems.
Such systems usually provide only image-to-image
operations.

When no suitable operations are available for a parti-
cular task, and a new operation must be developed, a
single-level software architecture is most desirable2.
VIPS, like most other command-based systems, has two
levels. While ideas for new operations may be tested
at the command level, the overhead in accessing
individual pixels makes this too inefficient to be
practical. However, the structure provided by VIPS
allows users to develop programs in a high-level
language and add them into the system with reasonable
ease. Other operations may be accessed directly within
a new operation by procedure calls. The use of PASCAL
as the implementation language is an advantage since
most new users have already had some exposure to the
language.

There are three ways commonly used to access images:
file-oriented, frame-buffer-oriented and memory-
oriented systems. File-oriented image access is generally
employed in applications where very large images are
commonly used, such as remote sensing (e.g. Vicar’).
Such systems usually operate in batch mode because
of the large image size. Systems which store images in
frame buffers (such as Ucipss) either have a small range
of fixed image sizes or use windowing schemes to operate
on a subimage. There is only a small number of images,
and these are accessed by number rather than by name.
Memory-oriented systems such as VIPS are much more
flexible in the size, number and naming of images and
other variables.

VIPS also has avaitable a wide range of variable types.
This allows a flexibility normally only obtainable in
image processing when using either an image processing
language or a conventional high-level language with a
subroutine library. This feature is shared by few other
command-based systems.

To make the system easier to use, full online documen-
tation is essential. This is particularly important in an
algorithm deveIopment environment, where there may
be a large number of commands available. VIPS pro-
vides complete online documentation for all of the avail-
able commands and variable types. The information is
cross referenced so that, if one operation is not successful
for a particular task, related operations may be found
quickly. Few systems give more than a brief description
of commands. A series of online tutorials and example
algorithms is also provided for users who are new to
VIPS or image processing. VIPS also provides a context
sensitive HELP key which may be used to get informa-
tion on command parameters. This feature serves a
similar purpose to prompting for missing parameters,
a method often used by other command-based systems.

Most other systems (e.g. Susie’” or Provision”) use
abbreviated command names. Users have to learn many
of these abbreviations to make proper use of the system.
VIPS uses full meaningful names, which are easier to
learn. Users are able to define their own abbreviations
(or even redefine the command names) to suit their own
tastes if they wish.

179

VIPS, like many other command-based systems, uses
a general-purpose time shared computer system as its
host rather than dedicated high-speed hardware (see
Duff I I for examples). Speed is not necessary for deve-
loping algorithms provided that the system is interactive,
whereas flexibility is essential. VIPS is unsuitable for
the implementation of the final algorithms in all but
special cases where speedlis not important, such as in
small batch runs typically used for research.

APPLICATIONS

There are currently three VIPS systems installed in New
Zealand. These are at the University of Canterbury,
where the system was initially developed, at the Wool
Research Organisation of New Zealand (WRONZ) and
at the Forest Research Institute (FRI).

At the University of Canterbury, one of the major
applications of VIPS is in teaching image processing
techniques, where it is used as part of a Master of
Engineering course in image processing**. In con-
junction with a series of lectures, the students are given
a typical industrial image processing problem for which
they must develop a suitable algorithm.

An important use to which VIPS is ideally suited is
the development of new commands and techniques
required when investigating new areas of image process-
ing. VIPS has been used in a number of such areas,
including an investigation into the properties of Rank
and Range filters’*s, and the development of algorithms
for growth ring tracking and defect detection in optical
and X-ray images of timber20.

The most important area of application of VIPS is
as an algorithm development tool. Because of the inter-
active nature of algorithm development, VIPS provides
a near ideal environment. Some of the applications that
VIPS has been used to investigate over the past three
years include

measurement of the area within growth rings of trees3
quality grading of kiwifruit to be exported3
classification of cell types in a stained wool fibre2 l
statistical texture measures for carpet wear assess-
menti9
determination of preservative penetration into timber
detection of shives in paper handsheets
measurement of parameters of wood pulp fibre cross-
sections22*23
defect detection in sawn timberi9,20.

Figure 4 lists the VIPS program for the detection of
blemishes on kiwifruit, and shows typical images at
various stages throughout the processing.

Full details of the VIPS hardware and software are
available to educational institutions at a modest cost.
For further information, contact the second author.

CONCLUSIONS

VIPS provides an excellent environment for both
command and algorithm development, the key features
being

l the general-purpose interactive nature of the system
0 the large selection of commands available
l the ease with which new commands may be added.

Other features which are important are: the availability
of looping and branching constructs for use within
command sequences; the wide range of variable types;
and complete crossreferenced online documentation.

Once the algorithm has been developed, VIPS may
be used to implement it for small-scale laboratory runs
where speed is not critical. Where time is important,
the information obtained from VIPS is valuable for
developing a dedicated system.

ACKNOWLEDGEMENTS

During the initial development of VIPS, D G Bailey
held a University Grants Committee postgraduate schol-
arship. The assistance of A Earl and R Cox in construct-
ing the version 1 hardware is also acknowledged. Version
2 of VIPS was developed at the Wool Research
Organisation of New Zealand ~RONZ), and version
3 at the Pulp and Paper Research Organisation of New
Zealand (PAPRO). The New Zealand Kiwifruit
Authority provided grants for the kiwifruit grading
project.

REFERENCES

1

2

3

4

5

6

7

8

9

10

11

Castleman, K R Digital image processing Prentice-
Hall, Englewood Cliffs, NJ, USA (1979)
Brumfitt, P J ‘Environments for image processing
algorithm development’ Image Vision Comput. Vol.
2 No 4 {November 1984) pp 198-203
Bailey, D G ‘Hardware and software developments
for applied digital image processing’ PhD thesis
University of Canterbury, Christchurch, New
Zealand (1985)
Hunt, B R ‘Digital image processing’ Adv, Electron.
Electron Phys. Vol60 (1983) pp 161-221
Cady, F M and Hodgsun, R M ‘Microprocessor
based interactive image processing system’ IEE
Proc. E Vol 127 (1980) pp 197-202
Cady, F M, Hodgson, R M, Pairman, D, Rodgers,
M A and Atkinson, G J ‘Interactive image process-
ing software for a microprocessor’ IEE Proc. E Vol
I28 (1981) pp 165-171
Hodgson, R M, Bailey, D G, Naylor, M J, Ng,
A L M and McNeill, S J ‘Properties, implemen-
tations and applications of rank filters’ Image Vision
Comput. Vol3 No 1 (February 1985) pp 3-14
Bailey, D G and Hodgson, R M ‘Range filters: local
intensity subrange filters and their properties’ Image
Vision Comput. Vo13 No 3 (August 1985) pp 99-l 10
Knuth, D E The art of computer programming, Vol
3 Addison-Wesley, Reading, MA, USA (1973) p
506
Wirth, N ‘On the composition of well structured
;rogas$ ACM Cornput. Surv. Vol 6 (1974) pp

Duff, M J B ‘Special hardware for pattern process-
ing’ Proc. 6th Znt. Conf, Pattern Recognition (1982)
p 368

180 image and vision computing

a

PROGRAM

SUBC kiwifruit 20

EXPAND kiwifruit

FILTER RANK kiwifruit kiwi2 5

LET kiwi3 = kiwi2

HULL kiwi3

TRANSPOSE kiwr3

HULL kiwi3

SUB kiwi3 krwi2

FILTER RANK kiwi3 kiwi2 5

EXTREME kiwi2,,maximum

IF maximum > 50

OUT “Krwrfruit has a point defect”/LINE

ELSE

THRESHOLD kiwi2 24

AREA kiwi2,,defectarea

IF defecLarea > sq_cm

OUT “Kiwifruit has an area defect”/LINE

ELSE

OUT “Kiwifruit is acceptable”/LINE

END

END

END

Removal of background

Intensity range normalization

Median prefilter to remove hairs

Convex hull across rows

Convex hull of columns to give model

Compare fruit with dynamic model

Locate maximum intensity

Locate area defects

Compare with 1 cm square limit

Figure 4. Use of VIPS to detect defects in kiwifruit: a, the VIPS program used; b, typical images obtained during
processing of a kiwifruit with a water stain defect (top row shows original image, image after filtering to remove
hairs and the model generated; bottom row shows defect regions, point defects and area defects)

12 Radhakrishnan, T, Barrera, R, Guzman, A and 13 Levialdi, S, Maggiolo-Schettini, A, Napoli, M,
Jinich, A ‘Design of a high level language (L) for Tortora, G and Uccella, G ‘On the design and imple-
image processing’ in Duff, M J B and Levialdi, S IImItatiOn of PIXAL, a language for image process-
(eds) Languages and architectures for image ing’ in Duff, M J B and Levialdi, S (eds) Languages
processing Academic Press, London, UK (1981) pp and architectures for image processing Academic
2540 Press, London, UK (1981) pp 89-98

~016 no 3 august 1988 181

14

15

16

17

18

19

20

21

22

23

Tamura, H, Sakane, S, Tomita, F, Yokoya, N,
Kaneko, M and Sakaua, K ‘Design and implemen-
tation of SPIDER - a transportable image process-
ing software package’ Comput. Vision, Graphics,
Image Process. Vol23 (1983) pp 273-294
~magelab and Imagetool model 100 user m~uals
Werner Frei Associates, Santa Monica, CA, USA
(1986)
Batchelor, B G, Brumfitt, P J and Smith, B V D
‘Command language for interactive image analysis’
IEE Proc. E Vol 127 (1980) pp 203-2 18
Batchelor, B G ‘Merging the AUTOVIEW image pro-
cessing language with PROLOG' Image Vision Com-
put. Vo14 No 4 (November 1986) pp 189-196
Hodgson, R M ‘First course in digital image process-
ing’ ht. J. Elec. Eng. Educ. (to be submitted)
Lee Hok Siew, Hodgson, R M and Wood, E J
‘Texture measures for carpet wear assessment’ IEEE
Trans. Pattern Anal. Mach. InteN. Vol 10 No 1
(1988) pp 92-105
Ling, Y P ‘Defect assessment in sawn timber’ M&g
report University of Canterbury, Christchurch, New
Zealand (I 986)
Orwin, D F G and Bailey, D G ‘The measurement
of wool cortical cell proportions’ in Proc. Workshop
Applications of Mathematics and Physics in the Wooi
Industry Lincoln College, Canterbury, New Zealand
(1988) pp 33&337
Kibblewhite, R P and Bailey, D G ‘Measurement
of fibre cross section dimensions using image
processing’ Appita (to be published)
Bailey, D G and Kibblew~te, R P ‘Automated
measurement of pulp tibre cross sections’ (in
preparation)

APPENDIX 1: VIPS ROUTINES
All routines listed below in upper case are VIPS
commands, while those in lower case are callable
procedures, Almost all of the VIPS commands and func-
tionals may also be called as procedures.

Functionals

%COLUMN

%DISTANCE
%HISTOGRAM

%INDEX

OhINTEGER

% LENGTH

%REAL

%ROW
%SIZE
%SQRT

%STRING
OhTRANSPOSE
%TYPE

182 image and vision computing

Returns the column part of a
vector
Returns the length of a vector
Returns the value of a selected
point in a histogram
Returns a value from the specified
position in a list
Converts a real number into an
integer
Returns the length of a list or
string
Converts an integer into a real
number
Returns the row part of a vector
Returns the size of an image
Returns the square root of a
number
Converts an entity into a string
Returns the transpose of a vector
Returns the type of a variable as
a string

%VALUE Returns the value of a selected
point in an image

Chain code manipulation

CHAIN AREA

CHAIN
BRANCHES

CHAIN CODE

CHAIN CHULL
CHAIN DRAW
CHAIN EXTRACT

CHAIN LENGTH

CHAIN LOOP

CHAIN MOMENT
CHAIN

PERIMETER
CHAIN

RECTANGLE
CHAIN SIZE

Data conversion

CONVERT

swap_fortran

upcase

varying_of_char

Data extraction

AREA

BLOB

EXTREME

FLASH

HIST GET

HfST DISPLAY

PROFILE

SLICE

STATISTICS

Returns the area surrounded by
a chain
Returns the number of separate
branches of a chain
Extracts all boundary chain codes
from a binary image
Returns the convex hull of a loop
Redraws the chain in an image
Extracts a single chain fom a set
of chains
Returns the num~r of elements
in a chain
Determines whether the chain is
a loop or a line
Calculates moments of a loop
Calculates the corrected length of
a chain
Determines the minimum area
enclosing a rectangle
Returns the extent of a chain

Converts from one image type to
another
Swaps row column info~ation in
a FORTRAN descriptor
Converts a VARYING OF
CHAR into upper case
Converts a FORTRAN String to

VARYING OF CHAR

Calculates the area of an object
in pixels
Counts the number of independ-
ent blobs in an image
Finds the minimum and
maximum pixel values
Displays an image with a flashing
cursor
Obtains the histogram of an
image
Displays a histogram on the
screen
Obtains an intensity line profile
of an image
Slices through the intensities of an
image
Obtains the mean and SD of an
intensity range

Data input and output

FILE Opens a file for data output
INQUIRE Initializes variables interactively
LOAD Loads one or more variables from

a file

OUT
SAVE

Outputs data to the terminal
Saves one or more variables in a
file

WRITE Outputs data to the data file

Display routines

CAPTURE

CLEAR
DISPLAY
DOWNLOAD
FLASH

GET
HIST DISPLAY
ROAM

SET DISPLAY

SET LUT

SLICE

assign-channel
clear-error

deassign_channel
display-abort

end_point_display

init_point_display

send_control_
block

transfer-block

Captures an image onto the
display
Clears al1 or part of the display
Displays an image
Downloads a user display routine
Displays an image with a flashing
cursor
Gets an image from the display
Displays a histogram
Modifies the hardware display
characteristics
Initializes and sets the display to
be used
Selects and initializes a hardware
lookup table
Slices through the intensities of an
image
Assigns a channel to the display
Clears the error LED on the dis-
play
Deassigns a channel to the display
Exit handler for user display com-
mands
Terminates the display of a series
of points
Initializes the display of a series
of points
Sends a control block to the dis-
play
Sends or receives a block of data
from the display

Filters

FILTER
ENHANCE

FILTER LINEAR
FILTER MOMENT

FILTER RANGE
FILTER RANK
FILTER SOBEL

FILTER TRIM

SET MASK
SHRINK

A rank-based edge enhancement
filter
Linear 3 x 3 convolution filter
Moment-based tilter using a
3 x 3 square window
A rank-based edge detection filter
Rank filters an image
A nonhnear local edge detection
filter
A trimmed linear filter using a
3 x 3 square window
Initializes a convolution mask
Shrinks (or expands) a binary
image

Fourier transformation

FFT Fast Fourier transforms an image

Image generation and retrieval

LOAD Loads one or more variables from
a file

~016 no 3 august 1988

NOISE Generates a noise image with
specified statistics

SAVE Saves one or more variables in a
file

TEST Generates a test image

Image manipulation

CHULL Convex hull of blobs in a binary
image

COPY Copies all or part of one image
into another

DISTANCE Applies a distance transform to
a binary image

EXTEND Extends the edges of an image
FILL Fills a region to a uniform

intensity
HULL Convex hull of intensities across

the rows of an image
ROTATE Rotates an image by 90
TEXT Displays text in an image or on

the display
THIN Thins an image to its skeletal form
TRANSPOSE Transposes an image (swaps the

rows and columns)
ZOOM Magni~es or reduces an image

Line drawing routines

ARCANGLE

ARCPOINT

CIRCLE
DRAW
LINE
PLOT
RAY

Plots a circular arc subtending a
given angle
Plots a circular arc between two
points
Plots a circle of a given radius
Draws a series of line segments
Plots a line between two points
Plots a point in an image
Plots a line from a start point in
a given direction

Point operators on a single image

ADDC
CLIP

DIVC
EXPAND

HIST EQUAL

HIST SHAPE

INVERT
LOOKUP

MULTC
SUBC

THRESHOLD

Adds a constant to an image
Clips the intensities of an image
at specified limits
Divides an image by a constant
Linearly expands the intensity
range of an image
Performs histogram equalization
on an image
Perfo~s arbitrary histogram
shaping on an image
Inverts the intensities of an image
Translates intensities in an image
via a lookup table
Multiplies an image by a constant
Subtracts a constant from an
image
Thresholds an image at the
specified intensities

Point operators on two images

ADD Adds two images with wrap-
around or saturation

183

AND
DIV
OR
MULT
SUB

XOR

Logical AND of two images
Calculates the ratio of two images
Logical OR of two images
Multiplies two images
Subtracts two images with
wraparound or saturation
Logical exclusive OR of two
images

load-variable

main-loop
match-variable

parse_variable
private-help

Program commands queue_ctrlc_ast

EDIT

ELSE
END

EXIT

FOR

IF

ON

PROGRAM

REPEAT

RUN
UNTIL

WITH

WHILE

Creates or modifies a VIPS
program
Optional part of an IF command
Marks the end of a PROGRAM,
IF, FOR or WHILE
Exits from the current program,
or all program levels
A loop command using a loop
variable
A branch command selects one of
two command sequences
Specifies the action to take on
errors or ^ Cs
Indicates the start of a VIPS
program
A conditional loop command
with the test at the end
Runs a VIPS program
The test command at the end of
a REPEAT loop
Repeats a loop once for each
value provided
A conditional loop command
with the test at the start

Miscellaneous VIPS commands

$

CONTINUE

DECLARE
DEFAULTS
DEFINE

DELETE
EXIT
HELP

INFO

LET

PSEUDO
SET

SHOW

miscellaneous utilities
Variable manipulation primitives

change-image
compatibility

copy-program

chain-add
chain-copy
chain_delete
image-copy

list-add
list_copy
list-delete

Changes the size of’ a VIPS image
Checks if two images are of the
same size
Copies a program from one
program variable to another
Adds two chains together
Copies one chain into another
Deletes a chain
Copies an image from one image
variable to another
Adds two lists together
Copies one list into another
Deletes a list

angle

call

check_var

VIPS control procedures

debu~handler

execute

~nd_~ommand

handler
initialise

Provides traceback info~ation
for user commands
Parses and executes a VIPS
command line
Locates a command in the
command table
Error handler used by VIPS
Initializes VIPS

dispose_temp_
image

extract
get-address

get-image-type
get_temp_image

obtain-type
option

phase

read-prompt

sdesc

str
vect

184

Loads a user command into the
VIPS command table
Loads a user variable into the
VIPS variable table
Calls the VIPS program
Obtains a variable name from a
‘wildcat-d’ operation
Parses a variable from its name
Informs VIPS of help libraries for
private commands
Control C handler used by VIPS

Executes a DCL command as a
subprocess
Continues after a set time or when
a key is pressed
Declares a VIPS variable
Lists the default VIPS values
Defines symbols which may be
used as commands
Disposes of VIPS variables
Exits from VIPS
Provides info~ation on all of the
VIPS commands
Provides general info~ation on
modi~~ations etc.
Assigns one VIPS variable to
another
False colour selection
Enables and disables various
controls
Displays current VIPS variables

Calculates the angle to a point
from the origin
Calls a procedure with the para-
meters provided
Checks if a string could be a VIPS
variable name
Deletes a temporary image
variable
Extracts an entity from a string
Obtains the address of a variable
or procedure
Returns the type code of an image
Creates a temporary image
variable
From a type code returns a string
Checks on option string for a
particular option
Calculates the phase of a complex
number
A prompted read from the
terminal
Provides a descriptor to a string
variable
Returns a dynamic string pointer
Returns a vector from two
integers

image and vision co~puf~ng

