
Range filters: local- 
intensity subrange filters 

and their properties 

A local filter which uses the local-intensity subrange of tinuities in mean intensity4, range filters will detect 

pixel intensity values within a window is described. edges. This paper investigates the effectiveness of 

The range filter is an extension of the rank filter and has these filters for this task. 

been found useful for detecting edges. The deter- The local subrange is calculated by ordering the N 

ministic and noise properties of the range filter are pixels within the window according to intensity, ie 

described and compared with those of the commonly 
used Sobel filter. (f,, f*, f?$ ., fN) (1) 
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where 

f, < f* d < fN (2) 

and then subtracting the intensity values for two 
In image processing, a local filter is any operatorwhose 
outputforapixel isafunctionoftheinputvalueswithin 
the neighbourhood of that pixel’. This neighbourhood 
can be thought of as a window, which is scanned 
across the input image; each position contributes one 
pixel to the output image. The window can be of any 
shape, although it is almost always symmetrical about a 
centre pixel* and is usually square. Local filters tend to 
have short calculation times, since generally only a 
small number of input pixels are operated on for each 
output pixel. 

A local subrange filter uses the statistical subrange of 
the pixel intensities within the window. In this paper, 
this filter is referred to as the range filter. The range and 
interquartile distance are often used in statistics as a 
measure of the variation of a sample. The interquartile 
distance has been applied to image processing by 
Scollaretal.3, as a substitute for the standard deviation, 
as a measure of the variation of pixel intensities within a 
window. If a region has very little spread in the local 
intensity values, then the range and interquartile 
distance are small. If a region has large discontinuities 
in intensity, or is very noisy, the local range and 
interquartile distance are large. One of the features of 
interest to those who use image processing is edges. 
Since edges are typically characterized by discon- 

selected positions (iandj) within this ordered list such 
that 

range(j,i) =6-c 1 <i<j<N (3) 

When this is performed over the whole image, it may be 
represented by 

g= Q,,(f) (4) 

where g is the output image. Thus the range filter IS an 
extension of another local nonlinear filter, the rank 
filter5, defined as 

rank(i) =c 1 <i<N (5) 

When performed over the whole image, this may be 
represented by 

g=R,(f) (6) 

Therefore, combining equations (3))(6) gives 

Q,(f) =R,(f) -R(f) i<j (7) 

Thus a range-filtered image is the difference of two 
rank-filtered images. Some of the properties of the 
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rank filter. Rank filters shift edges between regions of 
different intensity6,7. If two rank filters are used with 
different positions in the sorted list being selected, the 
edge will be moved by differing amounts. The 
difference between these, ie the local subrange. will 
represent edge activity5. This concept of shifting the 
edges and detecting the change that occurs has been 
discussed by Goetcherian7 and Pal and King*. They 
used one or other of the processes represented by 

g=f- rank 1 Pa) 

g=rank 9-f @b) 

BENCHMARK SELECTION 

The shifting of edges followed by the subtraction of the 
original image is a form of differentiation. In Figures 
1 a-lc, the response of a one-dimensional two- 
element range filter to a step edge and to an impulse are 
compared with the first difference. The range filter will 
always give a positive response for real data, since the 
pixel values are ordered before subtraction. When a 
range filter with a larger window is used, the responses 
become even more different from the first difference 
(see Figures 1 d-l f). In some cases, some pixel values 
may never be selected as the window is scanned past. 
This is demonstrated in Figure le by the impulse 
response of a three-element range 2.1 filter. For the 
two-dimensional range filter, the relationship with 
differentiation is even more subtle since the two pixel 
values that are subtracted to give the output may come 
from anywhere within the window. 

The properties and usefulness of the range filter can 
be illustrated by comparing it with the commonly used 
Sobel filter. The Sobel filter is a local filter which 
performs two-dimensional differentiation4. This filter 
consists of two linear filters which perform differentia- 
tion in the horizontal and vertical directions. The 
outputs of these filters are combined according to 

?f . ?f . 
g=;1x I+FJ 

to give a two-dimensional differential response. The 
weights used forthe components of the Sobel filteP are 
given by 

The magnitude of equation (9) gives the gradient, 
making the resultant image 

g= [(C&O f)2 + (D,O f)2]“2 (11) 

where 0 denotes convolution and the square and 
square root are defined as pixel operations. To simplify 
the computation, the forms 

g=(D,Ofl+D,O rl (12) 
g-max(lD,O A, ID,0 4) (13) 

d 

--&&-A-x A = :: :: :: 
e 

f 

Figure I. Differential nature of range filters: a original 
one-dimensional image consisting of an impulse and 
two steps b the first difference of a; c response of a two- 
element range filter (range 2.1); d-f responses of the 
three different three-element range filters (range 3,l; 
range 2.1; and range 3,2 respectively) 

Figure 2. Response of a range filter using a 3 x 3 square 
win do w as the window approaches a horizontal edge; 
a no window positions respond,. b window positions 
7-9 respond; c window positions 4-9 respond: d all 
positions respond 

Table 1. Width of the response of 3x3 square 
range filters to horizontal or vertical edges 

;I9 8 7 6 5 4 3 2 
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are often used4 (max is defined as a pixel operation). 
The Sobel filters defined by equations (1 1 )-(13) are 

used below as a benchmark for the range filters. 

EFFECT OF RANGE FILTERS ON BINARY 
IMAGES 

The edge detection properties of range filters can be 
illustrated using noiseless images of binary edges. (The 
effect of noise on range filters will be discussed below.) 
This section considers the response of range filters to 
the boundaries between adjacent black and white 
regions. A 3 x 3 square window is used unless other- 
wise specified. 

Response to horizontal and vertical edges 

The response of a 3 x 3 square range filter is the same 
for both vertical and horizontal edges, since the 
window is rotationally symmetric. The width of the 
response to horizontal or vertical edges is shown in 
Table 1. The blocked nature of the response among the 
different range filters arises from the shape of the 
window, and the way the window crosses the edge. 
Figure 2 shows that, as the window approaches the 
edge, window positions 7-9 respond simultaneously, 
as do window positions 4-6 and l-3. The physical 
spacing within the window between the two rank 
positions used in the range filter determines the width 
of the detected edge. The two component ra.nk filters 
shift the edge by different amounts, allowing the width 
and position of the detected edge to be specified in the 
output image by selecting appropriate rank values. 

Response to 45” diagonal edges 

The width of a diagonal edge response can be defined 
as the horizontal width of the response in pixels (Figure 
3). The response of range filters to diagonal edges is 
listed in Table 2, and may be determined in a similar 
way to that for horizontal and vertical edges (see Figure 

4). 

Detected edge width 

The width of the detected edge is often important. 
Filters with a response of one-pixel width are ideal if 
the response is on the desired side of the edge. In this 
case no thinning is required to obtain an edge map. The 
desired side of the edge is determined by the pro- 
cessing that is to take place after edge detection. This 
may be important if area or size measurements are to be 
made using the detected edge to represent the boundary 
of the object. By selecting the parameters of the range 
filter, the response may be positioned on the light orthe 
dark side of the actual edge. To get a similar result by 
thinning a wider response would involve unnecessary 
complications in the thinning algorithm, since 
information has been lost as to which side of the edge is 
the light or dark side. A single-pixel-width response 
may be a disadvantage when the image is noisy, since it 
is likely that some of the edge points will not be 
detected. This results in breaks in the output image and 
further processing is then needed to fill them. 

When uncertainty exists as to whether the response 
should be positioned on the light or dark side of the 

a b C 

Figure 3. Definition of the width of a diagonal edge: a 
a single-pixel- width edge; b a two -pixel- width edge; c 
a three-pixel- width edge 
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Figure 4. Response of a range filter using a 3 x 3 square 
window as the window approaches a diagonal edge: a 
no window positions respond,. b window position 9 
responds,. c window positions 7-9 respond,. d window 
positions 4-9 respond; e window positions 2-9 
respond,. f all window positions respond 

edge, an output two pixels wide is useful. In this case it 
is desirable to generate one pixel on each side of the 
original edge, so that the true edge is then the centre of 
response. A two-pixel-width response is also less 
susceptible to noise because, if some edge points are 
not detected, these are less likely to result in complete 
breaks in the output response. 

Responses wider than two pixels are only useful 
when the image is noisy to the extent that the edges are 
not detected reliably with a narrower response. In this 
case, algorithms are required to connect and thin the 
edges that are detected. The main disadvantage of a 
wide response is a cluttering of the image with 
detected edge points, especially when processing low- 
resolution images. 

The Sobel filter gives a two-pixel-width response to 

Table 2. Width of the response of 3 x 3 square 
range filters to 45” diagonal edges 

5 2 
6 
7 1 
8 1 

8 7 6 5 4 3 2 

3 3 2 2 2 11 
2 2 111 0 
2 2 111 
11 0 0 
11 0 
11 
0 
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both horizontal and vertical edges and a response two 
orfour pixels wide to diagonal edges of 45” (depending 
on the threshold used). This behaviour is similar to the 
response of the 3x3 square range filter using range 9.1 
or range 8.2. The general advantage of the range filters 
is that the width of the response can be selected by 
parameter selection. 

Response to general diagonal edges 
When the angle of a diagonal edge is otherthan 45”. the 
edge appears as a series of quantized horizontal or 
vertical ‘steps’ as shown in Figure 5. The properties of a 
range filter in the vicinity of these steps determine the. 
response to diagonal edges. For this reason, an isolated 
step will be considered. Away from the step, the 
response is the same as that listed in Table 1 for a 
horizontal or vertical edge. The characterizing feature 
of the response to the step is therefore the overlap that 
occurs between the responses of the filter to the 
horizontal or vertical sections on either side of the step. 
This overlap will be defined as the number of pixels 
along the direction of the edge for which the response 
is wider than that in the absence of the step. Examples 
of different overlaps are shown in Figure 6. Table 3 
shows the overlap for the range filters considered. 

The overlap may be calculated by considering the 
number of pixels on the light side of the edge as the 
window approaches the step. Figure 7 shows the case 
for the 3x 3 square window. The pixels that are 
selected by the range filter are those that are less than 
the higher rank position, and greater than or equal to 
the lower rank position. Thus the overlap is given by the 
distance, along the edge, between the first occurrence 
of the numbers corresponding to the two rank 
positions being used. The first occurrence of the 
numbers corresponding to each rank position falls 
within the window shape rotated through 180”, since 
rank and range filtering are convolution-like operators 
in that the window is scanned across every pixel 
position. This is shown more clearly in Figure 8 for an 
asymmetrical window shape. The overlap is therefore 
given by the difference in position in the window. For 
example, with a 3x 3 square window, the difference in 
position between ranks 3 and 7 is 2 2 (see also Figure 

7). 

Connectivity 
The importance of the overlap is seen when the 
connectivity between the adjacent pixels in the output 
image is considered. With a rectangular sampling grid, 
there are two main pixel connectivity schemes”: 

Table 3. Overlap in the response of 3x3 square 
range filters to non-45 diagonal edges 

j98765432 
i 

1 2 102 102 1 
2 1 0 -1 1 0 -1 1 
3 0 -1 -2 0 -1 -2 
4 2 102 1 
5 1 0 -1 1 
6 0 -1 -2 
7 2 1 
8 1 

Figure 5. The stepped nature of a non-45” diagonal 
edge 
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Figure 6. Definition of overlap in the response to a 
non -45” diagonal edge: a overlap is - 2; b overlap is 0; 
c overlap is 2 

0000000 
-n--s 

t 

0 011 2 313 3 
I I 

3 314 5 616 6 

I 
6 617 8 919 9 

’ -._-a 

9999999 

Figure 7. Graphical calculation of the overlap caused 
by a range 7,3 filter. (Ra 7.3 has an overlap of - 2 since 
7 is two squares to the left of 3.) The numbers in the 
squares indicate the number of rank positions within 
the window that respond as the window approaches 
the edge. The first occurrences of each number are 
boxed 
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Figure 8. Rotation of the window through 180” in the 
first occurrences of the numbers of rank positions that 
respond 

a b 
Figure 9. Definition of the two common neighbour- 
hood schemes on rectangular grids: a 4-connected 
neighbours; b g-connected neighbours 
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4-neighbour and 8-neighbour connectivity. The 
4-neighbour scheme allows a pixel to be connected to 
its four neighbours in the horizontal and vertical 

directions. The 8-neighbour scheme allows the four 
diagonal neighbours to be used in addition to the four 
horizontal and vertical neighbours. These two schemes 
are illustrated in Figure 9. Corresponding to these two 
connectivity schemes, there are two chain coding 
schemes for the resultant edges”. Coding may be 
simplified if the connectivity of the detected edges 
corresponds to the connectivity of the chain code. This 
is really only important when the width of the detected 
edge is a single pixel, since wider edges can be thinned 
before they are coded. Range filters can be used to give 
responses corresponding to either. connectivity 
scheme by selecting appropriate parameters. 

To obtain a consistent response to 45” diagonal 
edges and to other diagonal edge directions when 
using the 4-neighbour scheme, it is necessary (in 
addition to having a single-pixel overlap on steps) that 
the response to diagonal edges at 45” should also be 
two pixels wide (eg range 5.1 or range 9.5). Similarly, 
when the 8-neighbour scheme is used, the desired 
response to 45” diagonal edges will be a single pixel 
wide (eg range 5.2; range 6.3; range 7.4; and range 

8.5). 

Dependence of the response on window 
shape and size 
The response of range filters to noiseless binary edges 
differs considerably from one window shape to 
another, as illustrated by comparing the horizontal 
edge response of a 3 x 3 square window (Table 1) and 
that of a nine-element cross window (Table 4). The use 
of asymmetric windows will not be considered here, 
although they may be useful in detecting edges of a 
specific shape or orientation. The lack of symmetry 
makes them of little use as general edge detectors. 
Windows larger than those discussed here give wider 
responses. The main effect of changing the window 
size is to scale the response. The window shape has a 
marked effect on the response to binary edges. This is 
because the interaction between the window and the 
edge depends primarily on the window shape, as 
demonstrated by comparing the responses of the 3 x 3 
square window and the nine-element cross window. 

Comparison with the Sobel filter 
As mentioned above, the response of the Sobel filter is 
similar to that of the range 9.1 or range 8.2 filters. 
Range filters have the advantage of being able to 
specify the width and position of the output. In low- 
noise applications, this ability may be useful since it 
avoids the need to thin the resultant edge map in order 
to code the edge. Range filters have the added 
advantage that the connectivity of the resultant edge 
can be specified for filters with a single-pixel-width 
response. 

A disadvantage of the Sobel filter is that, with binary 
images, the output is almost always many valued. To 
obtain a binary edge map, the output image requires 
thresholding. Although this will be necessary in any 
case for greyscale images, it is an extra step when the 
image is already in binary form. In general, for range 
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Table 4. Width of the response of nine-element 
cross range filters to horizontal or vertical 
edges 

1 4 3 2 2 2 2 2 1 
2 3 2 1 11 1 1 
3 2 10 0 0 0 
4 2 10 0 0 
5 2 10 0 
6 2 10 
7 2 1 
8 

Figure IO. The use of range filters to determine the 
outline of kiwi fruit images. An image of a kiwi fruit 
with a defectknown as ‘Haywardmark’isprocessedby 
the Sobel and range 9,7; 9.5; and 8.5 filters 

filters that are useful as general edge detectors, the 
parameters of the constituent rank filters differ by more 
than two. 

Rather than compare the response of every range 
filter with that of the Sobel filter, only two or three 
range filters will be used. These filters are chosen to 
illustrate the variety of responses available from the 
range filters in different situations. 
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An example of the successful use of range filters is 
the extraction of the outline of kiwifruit in a shape- 
defect-detection algorithm. A silhouette image is 
simply filtered with a range filter. The different con- 
nectivity schemes of the resultant line image produced 
by the range 9.1, range 9.5 and range 8.5 filters are 
demonstrated in Figure 10. The image is then chain 
coded and the resultant chain code is processed to 
determine whether the fruit is defective. 

RESPONSE TO A UNIFORM INTENSITY 
GRADATION 

Since the range filter is a type of differentiating filter, 
the output depends on the intensity slope within a 
region, as well as on discontinuities in intensity. In the 
follovving discussion of the direction dependence of 
the response of range filters, a local region of uniform 
intensity slope is used as a test (see Figure 11). The 
centre element is normalized to 0 and the slope 
amplitude is normalized to 1 The slope is a multi- 
plicative constant and only has an effect when a limited 
number of discrete intensity steps is used. It is assumed 
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Figure Il. The normalized intensities within a 3 x 3 
window when a uniform slope is being filtered 
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Figure 12. The dependence of ranked normalized 
intensities within a 3 x 3 window when a uniform slope 
is being filtered, versus the direction of the slope 
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a 

Figure 13. The normalized responses of selected range 
filters and Sobel filrers when filtering a uniform slope, 
showina the directional dependence of the various 
filters - 

q 

Figure 74. Normalized intensity maps of the range 9.7, 
8,2; 9,2; 9,5: 5.2 and Sobel filters showing the 
directional dependence 
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that the spatial sampling grid is square, so that the 
change in amplitude per pixel step is the same in the x 
and y directions. Figure 12 shows the nine normalized 
intensity values for the 3x 3 square window. 

Figure 13 compares the slope response of selected 
range filters with that of the Sobel filters described by 
,equations (1 l)-(13). The range 9.1 and range 8.2 
filters give the same response as the approximate 
formulations of the Sobel filter that are commonly 
used. The range 9.5 and 5.1 and range 8.5 and 5.2 
filters have half the response of range 9.1 and range 8.2 
filters and so are less suitable for slope detection. 
Figure 14 shows the directional dependence very 
clearly. The images were produced by filtering an 
image which had a cone-shaped intensity profile. The 
images have been normalized so that the maximum of 
the response is 255. 

RESPONSE TO A NOISE IMAGE 

To determine the noise characteristics of the range 
filters, an image containing ‘pure noise’was filtered. A 
pure-noise image is generated by assigning to each 
pixel a random intensity from a prespecified distri- 
bution. The mean of the output of the filter gives an 
indication of the response of the filter to the noise, 
while the standard deviation gives an indication of the 
sensitivity of the filter to the noise. If the noise is 
superimposed on an image of an edge, the mean of the 
noise response gives an indication of the offset in the 
threshold used to determine the edge pixels. The 
standard deviation gives an indication of how readily 
the background noise may be separated from the edge 
points. If the standard deviation of the noise response is 
low, then the sensitivity to the noise is less, enabling 
the filter to work at lower signal-to-noise ratios. 
Although exact for linear filters where the super- 
position principle holds, this reasoning is only an 
approximation with nonlinear filters such as the range 
and Sobel filters. 

The probability density function for range-filtered 
pure noise with a range j,i filter using an N element 
window is given by 

p(k)=Nl j-= {({;/W dx]-‘[liip(x) dx]l-’ 
-02 (i- 1 )! (i-i- I)! 

r rm lN-I 1 

I! P(X) dx 
v+k J 

(N-j)! 

where p(x) is the probability density function of the 
input noise image. This equation is very difficult, if not 
impossible, to evaluate analytically for all except the 
simplest of noise distributions. For uniform noise with 
zero mean and a standard deviation of CJ, equation (14) 
reduces to 

N! 
p(k) = 

k’-‘-’ (,/EC- /+-I-’ 

(\,sa)N (i-i- I)! (N-j-i)! 

Odk<,‘12a (15) 
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This has a mean and variance of 

SD’= 
12(j-i) (N-j+i+l)a’ 

(N+l)‘(N+2) 

(164 

(16b) 

where SD denotes the standard deviation. From 
equations (1 5) and (16) it can be seen that, for the 
uniform distribution. the probability density function of 
the filtered image depends on the difference in rank 
values used. 

With the Sobel filter of equation (1 1 ), computations 
show the mean and standard deviation to be 

mean = 1.0760 

SD =0.5560 

(17a) 

(17b) 

Table 5 lists the means and standard deviations of the 
resultant images after filtering uniform and gaussian 
noise images with the range and Sobel filters. 

To summarize the results for the range filters and 

Table 5. Results of filtering images containing 
uniform and gaussian noise 

Filter Uniform Gausslan 

Range 91 81 6325 16.1442 872969 25.0836 
92 71 3389 16.8708 71 3885 22.2219 
9.3 61 1671 170710 606002 205318 
9.4 509072 168322 51 6382 19 3971 
95 407395 160809 433224 18 3769 
96 305507 147402 350725 17 3005 
97 204183 127032 262316 158575 
9.8 102578 94678 156757 13.4255 
81 71 3748 168410 71 6212 221159 
a.2 61 0811 170356 55 7128 188242 
8.3 509093 167710 449244 168289 
84 406494 160111 359625 153526 
8.5 304818 14.6911 276467 138641 
8.6 20.2929 126122 193968 121647 
a.7 101606 9 3508 105558 96104 
71 61 2142 17 0137 61 0654 205284 
7.2 509206 167381 45 1570 169403 
7.3 407487 159912 343686 146688 
7.4 304888 146650 254067 128280 
7.5 203212 126261 170909 108239 
7.6 101324 9 3435 88409 81715 
6.1 51 0818 167487 52 2244 19 4040 
6.2 407882 160024 36 3160 154986 
6.3 30 6164 147068 255277 128868 
6.4 203565 126231 165657 105740 
6.5 101888 9 3936 82500 7 6601 
5.1 408930 160338 439745 183952 
5.2 305994 147202 280661 141212 
5.3 204276 126703 172777 109760 
5.4 101677 9 3509 8 3158 77592 
4.1 307254 147638 356587 172621 
4.2 204317 127219 197503 12 3639 
4.3 102599 94391 89619 82485 
3.1 204655 12 6481 266968 158573 
3.2 101718 9 3795 107884 97761 
2.1 102936 94185 15 9084 134705 

Sobel(l1) 324027 166649 320057 172996 
(12) 207953 109470 204965 11 2633 
(13) 291935 152105 289200 158923 

Mean SD Mean SD 

lnout standard dewatlon IS 30 



uniform noise: the mean of the response is proportional 
to the difference in the rank values used (as given by 
equation (16)). A rank-position difference of three has 
approximately the same response as the Sobel filter. 
The standard deviation varies little over rank-position 
differences from fourto eight, and the value is much the 
same as that for the Sobel filter. The standard deviation 
drops steadily for rank-position differences less than 
four, but (as discussed before) most of these filters are 
unusable as edge detectors. 

When gaussiandistribution noise is used ratherthan 
uniform noise, the most notable difference is that the 
mean and standard deviation of the response are 
increased if either of the extreme rank positions are 
used. This is because the extreme rank positions are 
taken more from the tails of the distribution, and the 
tails of the gaussian distribution have a lower 
population density than the tails of the uniform distri- 
bution. This results in a larger difference between the 
rank values, giving a larger mean and standard 
deviation. When rank positions close to the median 
position are used, the converse is true. The central 
region of the gaussian distribution has a higher 
population density than the uniform distribution, 
resulting in reduced means and standard deviations. 

Using the mean as an indicator, the useful range 

described below, and then processed by the range and 
Sobel filters to give the detected edges. The resultant 
image is thresholded to give an edge map, the 
threshold being chosen to maximize a’figure of merit. 
The figure of merit (FOM) used is that proposed by 
PrattI 

1 ‘a 

FOM= 
1 

max(/,. I,) ,Z 1 +d? 
(18) 

where 1, is the,number of pixels detected in the ideal 
case; 1, is the number of pixels actually detected; d, is the 
distance of the ith detected pixel from the nearest 
ideally detected pixel; and CI is a scaling constant (l/9) 
which provides a relative penalty between smeared 
edges and offset edges. 

This figure of merit was chosen because other 
researchers (including Abdou and Pratt4 and Suciu and 
Reeves13) have used this measure on other edge 
detection schemes (Sobel, Prewitt, Snyder, Roberts, 
Kirsch, pixel mass operator, two-level model operators, 
and compass-gradient methods), and this will permit a 
direct comparison of results. 

filters have a larger offset in response than the Sobel 
filters. The large offsets that arise when extreme rank 

EDGE DETECTION IN NOISE 
positions are used may cause problems when detecting 
edges with lower signal-to-noise ratios. When the 
standard deviation of the response is used as an 
indicator of the sensitivity of the filters to noise, there is 
little difference between the range and Sobel filters. 

COMPARISON METHODS 
Two methods were used to compare the noise 
properties of the range filters and the Sobel filters. The 
first was to measure the number of false detections and 
false rejections caused by the edge detector, and the 
other was to use a figure of merit. 

Edge uncertainty measurements 
When an edge consists of a broad intensity ramp rather 
than an infinitesimally narrow border between two 
regions, the apparent position of the edge can be 
perturbed by the addition of only a small amount of 
noise. To test the filters in this situation, uniform noise 
was added to a slope and the resultant image 
thresholded. An example of such an image is shown in 
Figure 15. The uncertainty in the position of the edge is 
controlled by controlling the amplitude of the added 
noise. The filters tested are then applied to the edge 
image, and the figure of merit is calculated for each 
filter. 

The numbers of false detections and false rejections 
were measured, rather than calculated analytically as 
suggested by Abdou and Pratt4. The test image for this 
measurement consisted of a series of vertical 
alternating black and white bands. The bands were 
spaced in such a way as to give the same number of 
detected edge and background pixels (10000 in this 
case). This image was corrupted by adding noise as 
specified below and was then processed by the range 
and Sobel filters. Two intensity histograms were 
compiled: one of the pixels which would be detected 
edges in the ideal case, and one of the pixels which 
would form the background in the ideal case. These 
histograms were analysed to determine a threshold that 
minimized the total error. The false detections were the 
pixels that belonged to the background, but were 
above the threshold and were detected. The false 
reiections were the pixels that should have been 
detected but were not.because their intensity was less 
than the threshold. 

Figure 16 shows the figures of merit, calculated for 
the five range filters (range 9.1; 8.2; 7.3; 8,5; 5.1) and 
the three Sobel filters (from equations (1 I)-(1 3)) 
applied to the test image. All the Sobel filters gave the 
same figure of merit. The difference in response 
between the Sobel, range 9.1 and range 5.1 filters is 
statistically insignificant. A significant improvement in 
the response is given by the range 8,2 and range 8.5 
filters because these filters reject the extreme values. 
The use of extreme values causes the isolated pixels 
near the edges of the spread edge to contribute to the 
detected edge. This results in a wider, more smeared 
edge with a correspondingly lower figure of merit. The 
range 7.3 filter shows another significant improvement 
over the other filters. This improvement again results 
from the rejection of isolated pixels near the edges. The 
resultant detected edges for a 12 pixel wide uncertainty 
are shown in Figure 15. 

Point noise 
With the figure of merit method, the test images Image point (‘salt and pepper’) noise isoften caused by 

contain a single vertical edge 1000 pixels long. This a noisy sensor or by channel transmission errors’z. The 
edge image is corrupted by noise in the various ways noise usually affects isolated single pixels by giving 
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them a markedly different intensity from neighbouring 
pixels. 

To illustrate the effect of point noise on edge 
detection, consider an image containing an intensity 
step (height 40) corrupted by simulated binary 
symmetric channel errors with a bit error rate of 1 %. 
Figure 17 shows the noisy edge image and the results 
from processing this noisy image by range 9.1 range 
8,2 and the Sobel filters. Qualitative results are given 
for the other range filters in Figure 18. Range filters 
using the extreme values (ie ranks 1 and 9) are very 
susceptible to point noise. This is because the noisy 
pixels often provide the extreme values within the 
window. When values other than the extremes are used, 
such noise pixels are rejected, as shown by the response 
of the range 8.2 filter in Figure 17. The Sobel filters are 

all susceptible to point noise, but not to the same extent 
as the range 9.1 filter. 

Additive noise 

As mentioned previously, because of the nonlinear 
nature of the range filters, the noise response cannot be 
added to the edge response to give the total response 
to noisy edges. For this reason the following tests were 
carried out. The noisy edges consist of a horizontal step 
with random gaussian noise added. The signal-to- 

noise ratio (SNR) is given by 

SNR=(h/o)* (19) 

where h is the height of the intensity step and c is the 
standard deviation of the gaussian noise. 

The first test performed is to determine the number of 
misclassification errors when thresholding is used to 
detect the edges after range filtering. Images giving 
10 000 detected points and 10000 background points 
are filtered, and intensity histograms are compiled of 
the background and detected points. The histograms 
are compared and a threshold is chosen to minimize the 
total number of misclassified pixels. Figure 19 shows 
part of a typical image, the component images and 
intensity histograms obtained. Figure 20 plots the total 
number of errors obtained as a percentage of the total 
number of pixels for different signal-to-noise ratios. 
The Sobel filters gave slightly fewer misclassification 
errors than the range filters using extreme rank 
positions. Filters using rank positions near the median 
are considerably more susceptible to the noise. This 
can be explained by considering the range-filtered 
Image as the difference of the rank-filtered component 
images. Rank filters using positions close to the median 
blur edges5, especially when the edges have a large 
quantity of noise added to them. This blurring serves to 
reduce the apparent edge height, resulting in a lower 
apparent signal-to-noise ratio 

Figure 21 compares the figures of merit of selected 
range filters with those of the Sobel filters. Figure 22 
shows the results obtained with the various filters 
when the figure of merit was optimized for a signal-to- 
noise ratio of 5. The figure of merit results show similar 
trends to the misclassification results, in that the range 
filters do not perform as well as the Sobel filter at low 
signal-to-noise ratios. The differences between the 
different range filters are still apparent, but not as 
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pronounced as with the previous test. A comparison of 
the results of Figure 21 with those provided by Abdou 
and Pratt4 shows that the figure of merit in our test is 
higher overall. This results from the slightly different 
shape used for the test image. A relative comparison 
may still be made between the results 

EFFECT OF WINDOW SHAPE AND SIZE 

The noise properties of range filters are much less 
dependent on the filter shape and size than are the 
deterministic properties. If the noise is spatially 
correlated, as will be the case if other filters are used 
before range filtering, then the window shape will have 
a greater effect. A full analysis of these more subtle 
properties of the range filters is beyond the scope of 
this paper. 

SUMMARY AND CONCLUSIONS 

In low-noise applications, range filters are con- 
siderably more flexible than the Sobel filter. Charac- 
teristics of the response that may be ‘programmed’ 
include 

l the width 
l the position relative to the edge 
l the connectivity scheme of the output image 

When filtering ramp edges, the directional dependence 
of range filters is the same as that for commonly used 
approximations to the Sobel filter. Range filters have 
the disadvantage of providing only the slope 
magnitudes rather than the complete slope vectors. 

When the position of the edge is uncertain, range 
filters that do not use the extreme rank positions 
outperform the Sobel filter. This is because the 
uncertain edge has isolated points along the edge 
which are ignored by the range filters With images 
corrupted by point noise, the noise IS ignored by some 
of the range filters provided that the error rate is low. 

The range filters perform adequately when detecting 
edges corrupted by additive gaussian noise Where 
images have been severely corrupted, the Sobel filter 
performs significantly better than the range filters. 
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