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The results of research on rank filters are presen ted. The 
relationship of rank filters with other filters is briefly 
discussed. The main properties of rank filters are listed 
and an explanation is given for these properties. 
Several software and hardware implementations of the 
filter are described. Major applications to image 
processing are discussed, including noise smoothing, 
cluster detection, skeletization, edge enhancement and 
edge detection. 
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A local operator is a filter whose output at a pixel IS a 
function of the input values within the nerghbourhood 
of that prxel’. This neighbourhood can be thought of as 
a window since, for each output pixel, only the pixel 
values within the window are used. The window is 
scanned across the input image, each position con- 
tributing to one pixel in the output image. The window 
can be of any shape, although it is almost always 
symmetrrcal about a centre pornt’, and is usually 
square. Some common windows are shown in Figure 
1. Local operators tend to have short calculation times 
since generally only a small number of input pixel 
values are operated on for each output pixel. 

With linear filters, the output value IS a linear 
combrnation or weighted average of the input pixel 
values from within the window. The choice of weights 
depends on the application of the filter. The theory of 
this class of filter is well understood’. However, linear 
filters are not suitable for many image processing 
tasks”. A linear low-pass filter is often used to reduce 
noise, but has the disadvantage that edges are 
blurred”. The use of a linear high-pass filter to sharpen 
or detect edges has the disadvantage that high-spatial- 
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frequency noise is amplifieds6 and spurious oscil- 
lations are produced near edges5”. 

Nonlinear filters can be devised to overcome some of 
the disadvantages inherent in the use of linear filters3 ‘. 
The calculation time for local nonlinear filters is of the 
same order of magnitude as that for local linear filters 
since the same number of pixel values are processed. 
There are two broad classes of nonlinear filters3: those 
which are simple modifications of linear filters, and 
those which are not. Examples of filters from the first 
category are 

l ‘trimmed’ filters 
l ‘gated’ filters 
l nonlinear combinations of linear filters 

An example of a filter from the second category IS the 
moment-based filter. Trimmed filters8 are linear filters 
from which pixel values which are far removed in 
Intensity from the central pixel or the median value of 
the window are excluded, reducing the noise sen- 
sitivity of the filter. Gated filters” use some function of 
the pixel values within the window to determine which 
of several linear filters will provide the resultant pixel 
value; eg a pixel is compared with the average of its 
neighbours and, if this drfference is greater than a 
certain threshold, the centre pixel is replaced by the 
average! An example of a nonlinear combination of 
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Figure 7. Commonly used windows: a. 5 x 5 square.. 6. 
5 x 5 cross,. c. I x 5 strip,. d, 3 x 3 square,. e. 3 x 3 
hexagonal,. f 5 x 1 strip 
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linear filters is the Sobel filter3.‘, where the output is a 
nonlinear combination of the outputs of two linear 
edge detection filters. The moment-based filter uses 
the ‘centre of gravity’ or other moment of the pixel 
values within the window to detect edges”. 

A class of nonlinear filters of particular interest are 
the rank filters. With rank filters, all the pixel values 
within the window are ranked according to value, 
regardless of physical location within the window. The 
output of the filter is the pixel value selected from a 
specified position in this ranked list. Let the pixel values 
within a window of area N pixels be sorted into 
numerical order as 

(f,, f*. f3, I t//N) 

where 

(1) 

f, G fz < fN (2) 

The output is then selected as follows 

rank(i) =c 1 Gi<N (3) 

When this is done for all possible window positions, it 
can be represented as 

g=R, (fJ (4) 

where f is the input image,g is the processed image and 
i is the rank position selected. A special case of the rank 
filter when N is odd is the median filter, where the 
median rank position is selected. The other two special 
cases correspond to extreme rank position selection. 
These are called min and max filters” and are defined 
as follows 

min(Q =R, (f) 

max (0 =R, (0 

(54 

(5b) 

REVIEW OF PROPERTIES 
A summary of important results follows. Most of the 
reported work on rank filters has concentrated on the 
median filter. positions, these pixels will not be selected if rank 

positions near the median are used. 
Property 1: Rank filters smooth noise’2,‘3 
The effect of applying a rank filter to a region of 
nominally constant intensity / and variance V is to 
reduce the variance. This effect can be observed in 
Figure 2, where the narrowing of the intensity 
histogram is indicative of the reduced variance. The 
high spatial frequencies associated with the noise are 
attenuated; in particular, oscillations in intensity with a 
period less than the window width will be smoothed’3. 
In this case, since within the window there are pixel 
values at various stages in the cycle, pixels of approxi- 
mately the same intensity are selected as the window 
moves across the oscillation. The exception to this is 
where rank positions near the median are used and the 
oscillation is binary or two valued. Then each of the 
two values is selected in different window positions 
and so the oscillation persists. 

Much has been written on the noise smoothing 
properties of median filters2~4~s~14~1g and many of the 
authors have provided statistical results. 

Property 2: Application of a rank filter 
will change the mean intensity 
The important exception to this generalization is the 
case that occurs when a median filter is used in a region 
where the noise distribution is symmetrical. In this 
case, the median filter does not change the mean 
intensity / in the region’*. Selecting a rank position less 
than or greater than the median will reduce or increase / 
respectively. These effects are demonstrated in Figure 
2, where the mean intensity can be seen to shift. With a 
symmetrical input distribution, the use of rank 
positions other than the median skews the output 
distribution, as shown in Figure 2. 

Filters that use rank positions near the median are The general effect of applying a rank filter to an 
especially useful for eliminating impulse noise2,‘3.‘4. image with a skewed noise distribution, when 
This noise is usually caused by bit errors that occur compared with the effect of the same filter on an image 
during data capture or transmission. Since only a small with a symmetrical noise distribution of the same mean 
proportion of pixels within a window are likely to be and variance, is to shift the mean intensity in the 
noise pixels and tend to occupy the extreme rank direction of the skew. This shift can be explained as 

Figure 2. The effect of rank filters on a noise image 
using a 3 x 3 square window. The images and intensity 
histograms for ranks 2. 5 and 8 are shown 
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follows. When the mean value is calculated, outlying 
pixel values have a larger effect in determining the 
position of the mean than those closer in. When the 
median value is calculated, each pixel carries the same 
weight, and the median value is nearer the bulk of the 
intensity values than the mean value. This result also 
applies to other rank values near the median, but rank 
values near the extremes are determined mainly by the 
nature of the tails of the noise distribution. 

Property 3: Rank filters preserve the 
shape of edges2,20 

The shape of an intensity step, or ramp, between two 
adjacent regions of uniform but different intensities is 
preserved. Figure 3 shows the one-dimensional case. 
In general, this result carries over to two dimensions, as 
shown in Figure 4. When linear low-pass filters are 
applied to edges, step edges are blurred to ramps and 
the width of ramp edges is increased4. If the two 
regions are noisy, however, slight blurring does occur 
when a rank filter is applied2~20 

To explain this effect a particular example will be 
used (see Figure 5). Consider a nine-element window 
positioned near an edge so that it contains five pixels 
from the region on one side of the edge and four from 
the region on the other side. The two regions have 
intensities of 110 and 80 respectively. The expected 
value of the median in this case is 110. If uniformly 
distributed noise is added to this edge, the pixel values 
are distributed uniformly between 100 and 120 on one 
side of the edge and between 70 and 90 on the other 
side. The median, corresponding to a rank position of 5, 
selects the minimum intensitv of the five oixels 
between 100 and 120. This has an expected vaiue of 
103, whereas if there is no noise the expected value is 
110. This is effectively a slight blurring of the edge. Figure 4. The effect of rank filters on edges, using a 9 

x 1 strip window. The images and line profiles for ranks 

Property 4: Application of a rank filter 
will shift the position of edges 

- 2. 5 and 8 are shown 

Selecting a rank position less than or greater than the 
median will propagate the edge in the direction of the 
region of higher or lower intensity respectively13~2’ 
since the pixel values from one side of the edge will be 
selected while the window is still on the other side. This 
effect is illustrated in Figures 3 and 4. 

Only the median filter will preserve the position of 
the edge if the window is symmetrical about its centre. 

Window positlan 

Figure 5. The blurring effect of noise on a one- 
dimensional edge subject to median filtering with a 
nine-element window.. l , no noise.. x I expected value 
for noisy data 

/ 
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This is because, when the window is on an edge, there 
0 

X 
are just as many points on one side of the centre pixel 

0 
-x_$(-x - 

that are greater than the centre pixel value as there are 

b on the other side (see Figure 6). Thus the median value 
is the value of the centre pixel, and no modification is 

Figure 3. Shape preserva tion and edge propagation: a, made to the edge13. Any irregularities in the edge less 
a complex one-dimensional edge: 6, the edge after than the width of the window will be smoothed by 
filtering with a five-element max filter filters with rank positions close to the median. 
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Property 5: A rank filter will change all 
signals except a constant13 

Repeated application of a rank filter will continue to 
change the image. This happens because the only fixed 
points for rank filters other than the median are images 
of uniform intensitv. Thus. for rank filters in general. the 
only solution to the equation 

f=R, (0 
is 

f=constant 

(6) 

(7) 

Figure 6. Straight edge preservation property of 
median filtering 

This property is an extension of property 2 and is 
implicit in property 4. After any edges or intensity steps 
in the image have propagated to the edges of the 
image, there will be no edges left to propagate; 
therefore the image must be constant. With the median 
filter, edges do not propagate since edges are invariant; 
thus the fixed points of the median filter image consist 
of edges, regions of locally monotonic ~lope~~~*~*~, and 
certain types of saddle pointz3. The fixed-point, or root, 
images for two different window shay- and sizes are 
shown in Figure 7. 

Property 6: Min and max filters have 
specific properties11,12 

The properties of min and max filters can be written as 

min(max(min(fl))=min(f) (8a) 

max(min(max(f)))=max(f) (8b) 

min(max(~) ~~~rnax(rn~n(~) (9) 

These properties are not held in common with the non 
min or max rank filters. However, for rank positions 
close to the extremes, equations (8} and (9) may be 

Figure 7. The fixedpoin ts of an image subject to median filtering. The lower left- hand image is the fixed-point image 
of a 3 x 3 square window, and the lower right-hand image is the fixed-point image of a 3 x 3 cross window 
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Figure 8. local maximum from a max- filtered image. 
a, T-shaped filter,. 6. its effect on the local maximum 

before filtering ( ) and after filtering (s); ---, one 
window position 

considered to hold approximately, the approximation 
becoming less valid for positions towards the median. 

Property 7: In a max-filtered image, all 
regions of local maxima contain the 
window rotated by 18Oo’2 

This property can be explained by considering the T- 
shaped window shown in Figure 8. If there is a pixel 
whose intensity is a local maximum (as determined by 
the window size and shape) then this pixel will be 
selected by the max filter when the window is in the 
positions marked by asterisks. The dotted lines show 
one such window position. In this way, the pixel which 
is a local maximum is selected from different positions 
from within the window, giving a local maximum the 
shape of the window rotated by 180”. A similar 
property holds for min filtering with regard to the local 
minima. 

Property 8: Monotonically increasing 
functions of greyscale commute with 
rank filters’* 

Given a monotonically Increasing function M defined 
as 

g=M(f) (IO) 

then 

R,(M(f))=M(R,(f)) (11) 

Since the order of the pixel values from within the 
window does not change, selecting the same rank 
position will select the same pixel. The function M may 
be applied erther before or after rank filtering since M is 
a point operator, ie the resultant value at a pixel is 
independent of the value of neighbouring pixels. This 
property is of particular use in delaying some image 
processing decisions (eg selecting a threshold level) 
until the image is in a more suitable form (eg less 
noisy)” 

An extension of this property is that any mono- 
tonically Increasing function commutes with any series 
of rank filters”. ie 

R,(R,(R,(M(~)))=M(R,(R,(R,(f)))) (12) 

Property 9: Complement property 

Rank filtering a complemented image (ie an image 
which has its intensrty range reversed) with a rank 

position i is equivalent to rank filtering the original 
image using the rank position N+ 1 -i and comple- 
menting the result” “. Since complementing an image 
reverses the order of the ranked pixel values from 
within the window, the same pixel will be selected if 
the ranking is reversed. Thus 

-f/V&, ,= (-f), 

or when performed for the whole image 

(13) 

-RN. 1 ,(fl==R,(-0 (14) 

The consequence of this property and property 8 is that 
rank filters are commutative with monotonically 
decreasing functions of greyscale provided that the 
rank position used is modified appropriately. 

Property 10: In the application of a rank 
filter, no new intensity values are 
generated 

This property holds because at each wrndow position 
one of the intensity values from within the window IS 

selected for the output Image. Thus the Intensity values 
appearing in the output image will be a subset of those 
in the input image. This property IS important when 
only a few of the available intensities appear in an 
image. With linear filters In general, new values are 
generated. 

FAST METHODS 

Several efficient methods have been devised for 
applying median filters to an image”’ 28. Two of 
these2627 use a histogram modification scheme to make 
use of the overlap from one window position to the 
next (only one pixel value changes in the one- 
dimensional case, while a small fraction of the window 
area changes in higher dimensions-see Figure 9). In 
this method, a histogram is taken of the window in the 
first positron, and the median is derived from that. For 
subsequent window positions, the pixels which move 
out of the window are removed from the histogram and 
the new pixels are added. The median is then modified 
to represent the distribution In the new window 
position. This is repeated for all possible window 
positions. The method can be shown to be consrder- 
ably faster than conventional sorting algorithms, 
especially for larger window sires”. 

Bednar et a/.8 have reported a simplification of this 
method, using a sorted list rather than a histogram. 

PosItcon before moving Position before moving 

4 - w 

1 lx[xlx[xl ] 
- 

Position ofter moving 

a 

x x EEI x x 
x x 

C 

Position otter moving 

b 
Figure 9. Overlap in the pixels sorted as the window 
moves.. a, one-dimensional case (five-element 
window),. 6, two-dimensional case (3x3 window),. 
X. overlapping or redundant pixels 
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Step 1 2 3 4 5 

6=00110 0 
25=11001 1 1 
19=10011 1 0 0 
16=10000 1 0 0 

: 1 

23=10111 1 0 1 
8=01000 0 

20= 10100 1 0 1 
30=11110 1 1 
15=01111 0 

MEDIAN 1 0 0 1 1 
Value wanted 5th 2nd 2nd 2nd 1st 
Number of OS 3 4 2 1 0 

Figure 10. Ataman ‘s median sorting algorithm shown 
for nine elements 

Their method is good for one-dimensional rank 
filtering, but in higher dimensions no real advantage is 
gained since several values in the sorted list need to be 
changed when moving from one window position to 
the next. If more than one rank position is required, this 
method has the advantage that all rank positions are 
readily available. 

Another method” calculates the median value 
within a window by sorting the pixel values 1 bit at a 
time and discarding the values which will not be used. 
This is illustrated in the following example to find the 
median of nine 5-bit numbers (see Figure 10). In the 
first step the most significant bit is examined. Of the 
ninevalues, three begin with a ‘0’; therefore the median 
value begins with a ‘1’ and those numbers beginning 
with a ‘0’ are discarded. Of the six values that are left, 
the second is the median. The second most significant 
bit is now examined. Since four of the values that are 
left have a ‘0’ and the second is required, the next bit in 
the median is a ‘0’. Values with a ‘1’ are discarded. As 
this process is repeated for each bit, the median is built 
up 1 bit at a time. Although these methods are given for 
the median filter, they can be easily modified to perform 
rank filtering. 

HARDWARE SYSTEMS FOR MEDIAN 
OR RANK FILTERING 

Several hardware systems have been proposed or 
constructed for rank filtering. The earliest of these is an 
analogue circuit for selecting a particular ranked 
position from several voltages2g.30. Although this circuit 
is fast since it uses parallel circuitry to perform the 
processing, it is impractical in digital image processing 
applications because of the inconvenience and limited 
accuracy of D/A conversion, analogue processing and 
A/D conversion. To select a different rank position, the 
circuitry needs to be significantly modified making this 
method unsuitable for general rank filtering. 

Ataman eta/.28 have described an implementation of 
the median filter using the successive refinement 
method described earlier. The hardware they discussed 
should be able to,perform rank filtering with only minor 
modifications. However, it can provide only one rank at 
a time. In applications where more than one rank 
position is required, as in the applications suggested by 

8 

Bednar et al.’ and Bovik et a/.31, this would be a 
disadvantage since it would require duplication or 
significant modification of the circuit. The main 
advantage of this method is the relatively low 
component count when compared with other possible 
discrete implementations. 

Rank filtering is ideally suited to implementation by 
VLSI techniques since the filter can be designed using 
regular circuit structures32. Several methods have been 
proposed to apply VLSI techniques to one- 
dimensional median filtering32-34. These can be applied 
to two-dimensional processing using what is known as 
a ‘separable median’ filter’7.25. With this filter, first the 
rows then the columns are median filtered, giving the 
median of medians (both one-dimensional opera- 
tions). This is equivalent to median filtering with a 
horizontal strip window (eg as in Figure If) followed 
by median filtering with a vertical strip window (eg as 
in Figure lc). Although this has similar properties to 
the conventional median filter’7.25 it cannot be easily 
extended to filters of arbitrary rank. 

Fisher35 has presented algorithms for one- and two- 
dimensional filtering. These methods use a linear 
pipeline of identical cells. Each cell has a stored value 
and receives a message action and a message value 
from the previous cell. The message action is performed 
and at the next cycle the message action and value are 
passed to the next cell. As the window moves, the 
values of the pixels which move out of the window are 
deleted from the sorted list, and the values of the pixels 
which move into the window are inserted. In this way 
the total overall processing is minimized, being spread 
efficiently among all the cells. The processing 
performed by each cell consists of comparing and 
swapping two intensity values. The area of silicon 
required to implement this algorithm is proportional to 
the number M of pixels within the window, an advan- 
tage over alternative algorithms which require an area 
of silicon proportional to M2. For larger windows this 
property of the Fisher algorithm becomes a major 
advantage. 

The authors of this paper have proposed a VLSI chip 
which will perform rank and other related filtering on a 
two-dimensional image using a 3x 3 square window. 
This will use a conventional parallel bubble sorting 
algorithm, a method which becomes impractical for 
largerwindow sizes32. At the time of writing, the design 
for the prototype chip is nearing completion. This chip 
will be capable of processing images with pixel rates of 
the order of 100 ns per pixel, enabling images with up 
to 512 pixels per row to be processed at video rates. 

APPLICATIONS OF RANK FILTERS 

Application 1: Noise suppression 

Rank and other nonlinear filters may be used with 
advantage for noise suppression where the information 
in’the image being filtered is destroyed by conventional 
low-pass filtering. The filters mentioned in this section 
all have the property that to some extent they preserve 
edges in the original image. 

The main application of the median filter is in noise 
suppression and much has been written in this 
field2.4~g.‘5~20.36.37 The median filter works best on 
heavily tailed noise distributions (eg uniform dis- 
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tribution or exponential distribution)2.3’, and is very 
effective at removing spike noise’3,36. 

Combinations of rank filters can also be used for 
noise suppression8~“~2’~3’~39. There are two main ways 
rank filters can be used 

0 sequential filter passes”.2’.38 
l in a weighted sum of values from different rank 

bositions8~31 

Since these filters are generically low pass in their 
response (apart from edge preservation), band-pass 
and high-pass filters may be derived2’,3* from them in 
the same way as for linear band-pass and high-pass 
filters’. An example of a band-pass filter is 

g=minn (max,,(min, (0)) 

- mink (max,, (min, (0)) ntk (21) 

An algorithm that eliminates spike noise effectively 
using sequential passes is 

where the results from two low-pass filters with 
different cut frequencies are subtracted. When a low- 
pass-filtered image is subtracted from the original as in 

g=min(max(max(min(fl))) (15) g=f- min, (maxzn (min, (0)) (22) 
This can be considered as one of a family of filters. If we 
consider 

min, (0 =min(min(. min(fl)) (16) 

where the min filter is applied sequentiallyn times, then 
the following are all noise suppression filters”~*’ 

a high-pass-filtered image is obtained. Similar 
equations may be derived for the low-pass filters given 
in equations (17a)-(17~). Low-pass-, band-pass- and 
high-pass-filtered images based on equation (17d) are 
shown in Figure Il. 

g=minn (max, (0) 

g=max, (min, (t)) 

g=max,(min,,(max,(f))) 

(17a) 

(17b) 

U7c) 

g=minn (max,, (min, (0)) (17d) 

The filters represented by equations (17a) and (17b) 
eliminate negative and positive going features respec- 
tively; the size of the feature eliminated depends on the 
parameter n. Rank positions other than the extremes 
give similar results. The main disadvantage of these 
filters is that, in general, the mean intensity level is not 
maintained if the input images are noisy. This can be 
inferred from property 6 above, which also suggests 
that the filters represented by equations (17~) and 
(17d) will be better in this respect. 

A linear combination of rank filters also eliminates 
noise8,3’. In general this type of filter may be 
represented as 

Q=; W,R,(f) where $ W,=l (18) 
,-I i 1 

Application 3: Shrinking and expanding, 
skeletizing 

Min and max filters have been proposed as substitutes 
for shrink and expand operators when processing 
multivalued images2~“~*‘. Rank filters in general may be 
used, since they also propagate edges (property 2). 
Rank positions greater or less than the median will 
expand or shrink regions of high intensity respectively. 

Several algorithms have been proposed for skeletiz- 
ing images using min and max filters2’~3g. One of 
these” uses ‘gated’ min and max over several different 
window shapes and positions to extend the skeletiza- 
tion algorithms used with binary images. The other 
algorithm 3g uses min and max filters to shrink and 
expand the image in the following way. The image is 
shrunk using the iterated min filter for several different 
iteration lengths. Each of these is expanded once using 
the max filter, and subtracted from the previous shrunk 
image according to 

g,,=min,_, (0 - max(min, (0) (23) 

Different schemes for selecting the weights give dif- This result is nonzero as a result of property 6; the 
ferentfamilies of filterswhich are optimal in a particular 
sense3’. In both cases found in the literature, the 

points in the resultant image are those which are a 

weights are symmetrical about the median as in the 
distance n- 1 from the edge of the object and are not 
adjacent to any points at a distance n from the edge. 

equation When the results for several n are summed the resultant 

W N+lLi = w, 1 di<N/2 

Application 2: Low-pass, band-pass and 
high-pass filtering 

Equations (17a)-( 17d) represent a type of spatial low- 
pass filter, the cut frequency being dependent on n. In 
general, as n increases, the cut frequency decreases 
since larger features are eliminated. These are not true 
low-pass filters” since edges are preserved. When 
using these filters in two or higher dimensions, the 
frequency response is direction dependent, but this 
limitation can be overcome to a certain extent by using 
rank positions other than the extremes3*. An example 
of this for a 3x 3 window is 

g=R,(R*(R,(R,(R*(R,(f)))))) (20) 

(19) image contains the skeleton of f 
m 

h=Cg, (24) 
n- 1 

These steps may be combined as follows to give what 
will be referred to as a ‘skelet’ filter. This filter combines 
the residue from one shrink/expand operation with the 
original image. Let 

g=f- max(min(fl) 

Then 

(25) 

skelet(f)=min(max(min(f)+g)) (26) 

Each time the skelet filter is iterated, the image is shrunk 
by a single layer of pixels, that layer being replaced by 
the skeleton. This process is repeated until no more 
change is made to the image (or until any changes 
made are insignificant). The fixed point of the skelet This corresponds to equation (17a) with n=3. 
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Figure 11. Low-pass, band-pass and high-pass filtering of an image. The low-pass filter is described by equation 
( 17d) with n = 7. The band-pass filter is described by equation (2 1) with n = I and k =2. The high-pass filter is 
described by equation (22) with n =2 

filter is the skeleton of the image. Figure 12 shows an 
image after successive passes of the skelet filter. 

Application 4: Streak and spot/cluster 
detection 

Batchelor has used the min and max filters to detect 
spots and streaks in images, without detecting step 
edges4’ He uses the equation 

g=f-max(min(f)) (27a) 

to detect streaks and spots which have a higher 
intensity than the surrounding pixels, while use of the 
equation 

g=min(max(f)) -f W’b) 

detects streaks and spots of lower intensity. The 
equation 

g=min(max(f))-max(min(f)) (27~) 

(being the sum of equations (27a) and (27b)) will 
detect both sets of streaks and spots. The size of the 
detected features can be increased by using the iterated 
min and max filters given by equation (16). After the 

filtering has been done, the resultant image g may be 
thresholded to obtain a feature map. 

These equations can be used in a similar way to 
detect clusters”. Consider an image containing several 
small isolated regions of high intensity. The max filter is 
used repeatedly to expand these regions until some of 
them merge or fuse together. The min filter is then used 
to shrink the regions back to their original size. The 
regions which merged remain connected and may be 
detected by subtracting the original image. These 
interconnecting lines may be expanded again to select 
the original points that are clustered. This process is 
shown in Figure 13. 

Application 5: Edge detection 

If regions of interest, which are different in intensity 
from the surrounding pixels, are shrunk then the 
difference between the result and the original image 
will represent edge activity. This is because the edges 
between regions shift when the shrink operator is used, 
giving higher-intensity regions in the difference image 
where the edges have moved. Min and max filters as 
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Figure 12. Successive passes of a skelet filter on a 
binary image. Note that, after pass 4. no further 
changes are made in the image 

shown in the equations 

g=f- min(Q 

g=max(f) -f 

(28a) 

Wb) 

have been used to do this2’ 4’ and the results are 
demonstrated in Figure 14. These filters may be 
generalized, using any rank positions, in the form 

g=R,(f) -6 (0 i<J' (29) 

The two rank filters are used to shrink or expand the 
regions of interest by differing amounts (property 4). 
The difference image then has higher intensity where 
the borders of the regions of interest have been shifted 
as demonstrated in one dimension in Figure 14. 
Because of the noise smoothing properties of rank 
filters (property 1) these filters are reasonably insen- 
sitive to noise, especially spike or other heavy-tailed 
noise. 

Figure 73. The use of rank filters for cluster detection. 
The second row shows one iteration of the max min 
filters and detects closely grouped clusters. The third 
row shows two iterations of the max min filters 

-**X-x-X OrIginal edge 

a x-x-X-x-x-x 
j+)+X-X” Rank I 

b 
/ 

x-*x-e-x-*- 
X-x~-x-K4+X Rank 3 

Whenj=N and i=l in equation (29). the filter gives 
the statistical range of the pixel values within the 
window; for other values of i andja subrange is given. 
For this reason these filters are called range filters and 
are represented as 

C -4 )(_x-x-x-x -. 
x-x **,,/ d - ‘-x-x-x Range (rank 3-rank I) 

Figure 74. Edge detection by a range filter 

Ra,, (0 =R, (4 -R, (4 (30) 

This can be computed in a single pass of the window, 
rather than as a difference between two rank-filtered 
images, as follows 

Application 6: Edge enhancement 

range(j, i) =4-f (31) 

The result of range filtering an image with several 
values of i and; is shown in Figure 15. A companion 
paper describing the properties of this filter in more 
detail is in preparation42. 

When an image is blurred, whether in the optical 
system forming the image, or as a result of low-pass 
filtering to remove noise, it is often desirable to sharpen 
or enhance the edges in the image. A gated rank filter 
may be used for this task. This filter compares the 
intensity of the centre pixel of the window with the 
mean of two rank values. If the centre pixel value is 
greater than the mean then the larger rank value is 
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Figure 15. Edge detection using three different range fitters 

selected, otherwise the smaller is used. This may be 
represented as follows 

new value=f, if L, > cr;+ o/2 (32a) 

new value=r; if fCent, G (f,+f,w (32b) 

An alternative viewpoint is to compare the centre pixel 
value with each of two rank values, selecting the 
nearer. This can be expressed as 

new value=f, if Ilr,-f,,,,;~l>l~-f~~,,,t,~l (334 

new value=6 if IQ-L,,,J %-Lt,l (33b) 

When the window is in the vicinity of an edge, the two 
rank values are considered to represent the regions on 
either side of the edge. The centre pixel is assigned the 
value of the region that it is nearer to in intensity. It has 
been found that the use of extreme rank positions gives 
the best edge enhancing properties; however, such a 
filter also emphasizes the noise. Using rank positions 
somewhere between the median and the extreme 
positions is better in that noise enhancement is 
minimized. With this method of edge enhancements 

ringing is prevented since no new pixel values are 
generated (property IO). Figure 16 shows the effect of 
this filter on several blurred and noisy-edges. 

SUMMARY AND CONCLUSIONS 

In all the applications presented here rank filters 
perform as well as,.or better than, conventional linear 
filters. When used for noise suppression, most of the 
edge information in the image is retained. When 
applied to streak and spot detection, features up to a 
desired size may be extracted, without detecting edges 
For edge detection, range filters are less sensitive to 
noise than linear filters and perform about as well as the 
commonly used Sobel filter. With edge enhancement, 
the gated rank filter is less sensitive to noise than linear 
filters, and ringing is prevented. 

The other applications or tasks discussed in this 
paper cannot be performed by conventional linear 
filters. The shrink and expand operators are restricted to 
binary image processing, and rank filters may be used 
as substitutes for these when processing greyscale 
images. Skeletization normally requires special- 
purpose algorithms but may be performed with 
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kfgure 7 6. The use of the gated rank filter for edge enhancement. The tog row shows the original image enhanced 
enhanceb using ranks 9 and f 

general-purpose rank filters at the expense of increased 
computation time. 

Several implementation schemes for rank filtering, in 
both software and hardware. have been presented. No 
real comparison Ras been made between the methods 
since there is not enough published data for a complete 
assessment of the merits of each scheme. 

Overall it has been shown that rank filters have many 
properties that make them a useful toof in image 
processing. The general nature of this tool has been 
shown through its application to a wide variety of 
tasks. 
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