
Robot Identification using Shape Features
on an FPGA-Based Smart Camera

Miguel Contreras, Donald Bailey, Gourab Sen Gupta
School of Engineering and Advanced Technology,

Massey University
Palmerston North, New Zealand

M.Contreras@massey.ac.nz, D.G.Bailey@massey.ac.nz, G.SenGupta@massey.ac.nz
ABSTRACT
An FPGA based smart camera captures images of soccer robots,
and processes them using stream processing to identify the
individual robots. Three standard methods of distinguishing the
robots based on shape features are compared, and the advantages
and disadvantages of the different methods discussed.
Compactness and moment based measures give poor performance
because of the sensitivity of the low resolution shapes to relatively
small distortions. Normalised area gave the best results in this
application.

Categories and Subject Descriptors
I.4.7 [Image Processing and Computer Vision]: Feature
Measurement – Size and shape; I.5.4 [Pattern Recognition]:
Applications – Computer vision.

General Terms
Algorithms, Measurement, Experimentation.

Keywords
Robot soccer, compactness, moments, area.

1. INTRODUCTION
Robot soccer has often been used as a platform for robotic and
robot vision research. Recently, we have been exploring [1, 4] an
FPGA-based smart camera for robot identification.

With small robots, a global vision system is usually used to track
the robots and the ball. In a global vision system, the camera is
mounted over the playing area, and has the complete playing field
within the field of view. Software based image processing is
usually used to locate the robots and ball, and pass this data on to
the strategy processor which determines the desired behaviour,
and sends commands to the individual robots.

Moving to an FPGA based smart camera can significantly
increase both the spatial and temporal resolution, and reduce the
latency [4], all of which lead to improved control of the robots.
The smart camera replaces the image processing performed on a
conventional computer, and performs all of the processing within
the camera itself [3]. Therefore, only the data extracted from the

images, rather than the images themselves, need to be sent from
the camera, reducing communication overhead. Most smart
cameras store the captured image within a frame buffer before
beginning processing. Using an FPGA, however, enables the
images to be processed directly as they are streamed from the
camera, significantly reducing the latency [1]. However, stream
processing imposes strict timing constraints (one pixel per clock
cycle) and requires all processing to be performed on the pixels in
the raster order. These place significant constraints on the
algorithms used within the processing.

Individual robots are identified by coloured patches on the top
surface of the robots (visible to the global camera, see Figure 1).
The orientation of the robot is determined from green and pink
triangles positioned on opposite corners of the robots. The two
teams are distinguished from the colour of the team patch in the
centre of the robot; one team is blue, and the other yellow. The
individual team members are distinguished by the shape of the
team patch, whether circular, square, or rectangular.

Figure 1. View of robots as seen from the global camera.

This paper explores different approaches to identify the individual
robots based on shape features extracted from the team patch,
subject to the processing limitations associated with processing
streamed data (using only local information). Specifically, three
approaches are compared: using compactness or complexity,
second moments, and areas.

Section 2 outlines constraints and other complicating factors
associated with the images, and describes the pre-processing
performed on the images before shape recognition. Section 3
describes the three approaches to identifying the robots, while
section 4 discusses the advantages and limitations of each.

2. CONSTRAINTS
When processing the images using an FPGA, stream processing is
the most appropriate processing mode [2]. This requires all of the
processing to be performed for a pixel as it is streamed from the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
IVCNZ '14, November 19–21 2014, Hamilton, New Zealand
Copyright is held by owner/author(s). Publication rights licensed to ACM
ACM 978-1-4503-3184-5/14/11…$15.00
http://dx.doi.org/10.1145/2683405.2683437

294

camera. Point operations can easily be performed, as can filters
with appropriate row buffering [2]. However, region processing
and feature extraction are a little more complex. Single pass
connected components analysis is able to measure any features
which can be accumulated incrementally [8], such as area,
moments, perimeter, etc. However more complex region
processing, requiring multiple neighbouring pixels, cannot be
practically implemented due to the timing and processing
constraints. For efficient resource utilisation of the FPGA,
limiting calculations to integer or fixed-point arithmetic is a
necessity.

The position of the camera over the playing area means that a
wide angle lens must be used to fit the complete playing area
within the field of view. This results in significant lens distortion.
When mounting the camera, it is virtually impossible to have the
camera precisely perpendicular to the planar playing surface.
Therefore, mild perspective distortion is also inevitable. The
effects of these mean that the size of a pixel is not uniform across
the image (there is a variation of scale), and there are distortions
to the shapes of objects although this is minor when considering
shapes locally. Normally such lens distortions would be removed
through camera calibration and image rectification. However, this
does not fit easily within a stream processing framework, and
would significantly impact the latency. Instead, the distorted
images are processed, with the camera calibration applied to the
extracted features.

More significant is the variation in illumination across the image.
This, combined with global colour thresholding for object
detection, affects what is detected. The pixels around the edge of
each coloured patch, which consist of a mixture of colour and
background, are most sensitive to this, resulting in changes to the
area detected. When coupled with the relatively small size of each
coloured patch, this effect can be significant. Small flaws in the
detection of the shape become magnified the further they are from
the centre, caused by differences in pixel scale and luminance.

The colour image sensor uses a Bayer pattern to give the coloured
pixels. This lowers the effective colour resolution, and the
interpolation of the colour channels as part of desmoaicing can
introduce artefacts at coloured boundaries.

2.1 Processing
The image processing algorithm [4] starts by capturing raw pixels
from the image sensor and converting them to full colour using a
bilinear Bayer interpolation filter. With the camera and lens
combination used, a pixel skipping mode is required to achieve
the desired resolution with the field of view covering the complete
playing area. A non-linear colour edge enhancement filter is then
used to reduce the blur introduced by the interpolation filter. The
colour pixels are then converted to luminance and chrominance
components (using a power of 2 conversion matrix [10]) to
separate much of the luminance effects of the changing light
levels. (Note that with the linear transformation, the chrominance
components will still scale with changes in lighting.) The image is
then thresholded to detect the colours associated with the patches.
The output from this stage is a label image, with each pixel
represented by a label corresponding to the detected colour. A
connected components analysis algorithm determines groups of
adjacent pixels with the same label. A simplified single pass
algorithm is able to be used because the coloured patches are
known to be convex.

During connected components analysis, the shape features
required for shape location and identification are accumulated.
These include:

• area;
• perimeter (determined by detecting the region edges);
• sum of x, and sum of y (used for calculating the centre of

gravity); and
• sum of x2 and sum of y2 (used for calculating second

moments).

Each detected region is associated with a robot (or ball), and from
the features the robot location, orientation, and identity are
determined.

Figure 2. Other test images used.

(a)

(b)

(c)

295

2.2 Test Images
In addition to the image shown in Figure 1, the images in Figure 2
are also used for testing and analysis of the various methods.
Figure 1 shows the robots in the centre, where lighting is the best,
and distortion is minimal. This can be considered as the best case
conditions. Figure 2(a) shows the robots further from the centre,
introducing both equal amounts of distortion errors and variations
in lighting to each team. Both the distortion and lighting are worst
in the image corners, so are representative of the worst case
conditions. Figures 2(b) and 2(c) demonstrate a mixture of both
best and worst case conditions, with alternating team positions.

3. METHODS CONSIDERED
The three robots on each team are distinguished by different
shaped team patches. The different shapes are:

• a circle
• a square (with aspect ratio of approximately 1:1); and
• a rectangle (with aspect ratio of approximately 2.4:1).

The method used to distinguish these shapes must fit with the
stream processing model. This limits the range of features that can
be considered, and rules out features that cannot be calculated
incrementally (for example those based on the convex hull,
minimum area enclosing rectangles, Fourier descriptors, etc.), as
these would require multiple passes. The extraction of the region
itself would require a two pass component labelling algorithm,
requiring external frame buffer memory, and severely impact on
the algorithm latency.

Due to the highly dynamic nature of robot soccer, the robot
identification method must be robust to every possible situation. It
must be rotation invariant, as the robot must be correctly
identified in any orientation. It must also be invariant to the
distortions present within the image. The primary distortion is lens
distortion, which predominantly affects the scale, as a result of the
reduction in magnification with radius from the centre of the
image. Therefore, without image rectification, scale invariance is
also essential.

Three methods were chosen and compared using Matlab, before
implementation on the FPGA.

• One of the most commonly used rotation and scale
invariant shape descriptors is compactness, or its inverse,
complexity [5]. It is dimensionless, making it scale
invariant, and has an advantage of being simple to
calculate, and its constituent features, area and perimeter,
can be calculated incrementally.

• A related shape descriptor is the spread of an object. This
is based on a moment invariant using second moments.
Moment invariance makes it independent of orientation,
and after normalising by the area gives a scale invariant
dimensionless descriptor. The moment features are also
able to be calculated incrementally.

• The observation is made that the different shaped
identification patches have different areas. The patch area
on its own cannot be used directly, because of scaling
issues resulting from distortion, but the area can be
normalised by the area of the orientation patches.

Each of the methods will be described in more detail, and results
compared in the following sections.

3.1 Compactness or Complexity
Compactness is a relatively simple and widely used shape
descriptor [5, 9]. It uses the perimeter, P, and area, A, of a binary
shape and produces a dimensionless value, irrespective of size or
orientation:

2

4 ACompactness
P
π

= (1)

Compactness has a maximum of 1.0 for circles, and decreases as
the shape becomes more elongated or has more protrusions (for a
given area, the perimeter increases).

From a computation point of view, its inverse, complexity, is
more convenient to calculate on an FPGA as a simple fixed point
number can be used:

2PComplexity
A

= (2)

Ideally, the different shapes can be distinguished from their
different descriptor values:

2

2

(2) 4 12.6circle
rComplexity

r
π π
π

= = ≈ (3)

2

2

(4) 16square
hComplexity

h
= = (4)

2(2 2) 19.3rectangle
w hComplexity

wh
+

= ≈ (5)

where r is the radius of the circle, and w and h are the width and
height of the rectangle (w = 2.4h).

The area can be relatively easily calculated for a binary image by
totalling the number of pixels present for each shape. However
calculating the perimeter for binary images is more complex [6,
7]. The initial approach was to simply count the number of 8-
connected pixels on the edge of the coloured patch (those which
have at least one 4-connected neighbouring background pixel).
This gave quite a wide spread of descriptor values, particularly for
the square and rectangle (see Table 1, first column). The
significant overlap in the range of values meant that the
recognition results were not robust, with 38% of the robots
misclassified. All of the descriptor values were significantly lower
than the theoretical values calculated above because the perimeter
along the diagonals is significantly under-estimated.

Table 1. Range of complexity descriptors from the test images.
 Simple perimeter Weighted perimeter
Circle 9.60 – 11.08

μ = 10.54, σ = 0.52
14.06 – 15.94

μ = 14.93, σ = 0.69
Square 8.65 – 12.60

μ = 10.70, σ = 1.61
15.88 – 19.56

μ = 17.59, σ = 1.41
Rectangle 10.64 – 14.40

μ = 12.56, σ = 1.42
18.55 – 23.03

μ = 20.57, σ = 1.56
Misclassification rate 38% 21%

The second approach was to compensate for the under-estimation
along the diagonals by giving more weight to diagonal pixels.
This was accomplished by giving a weight of 1.5 to edge pixels
which had more than one background pixel in its 4-connected
neighbourhood, something which can easily be detected locally.

296

This perimeter measure tended to slightly over-estimate diagonal
lengths, giving descriptors that were slightly higher than expected.
However, the results are significantly improved (see Table 1,
second column), although there was still some overlap between
the ranges. Using thresholds of 15.75 between circles and squares,
and 19.0 between squares and rectangles gave a 21%
misclassification rate – still too high to be practical.

3.2 Moments
The difficulty in accurately measuring the perimeter led to a
different approach to estimating the complexity. Moments are
another common method of characterising shape [5], with the
spread of a shape being characterised by its second moment (the
variance about the centre of gravity). Objects which are more
spread would have a higher second moment. In two dimensions,

2 2
2 2() ()

, x y

x x y y
A A

σ σ
− −

= =∑ ∑ (6)

The sum of horizontal and vertical variances is invariant to
rotation, but has units of distance squared. Therefore, to derive a
scale invariant spread descriptor, the moment invariant can be
normalised by the area:

2 2
x ySpread

A
σ σ+

= (7)

Assuming that the origin is at the centre of gravity then the ideal
descriptor values for the different shapes are then

()2 2 42
4

2 2 2 0.159
()circle

x y dxdy r
Spread

A r
π
π

+
= = ≈∫∫ (8)

3 31
12

2

()
0.167

()square
w h wh

Spread
wh
+

= ≈ (9)

2 2

0.235
12rectangle

w hSpread
wh
+

= ≈ (10)

where w and h are the width and height of the rectangle
respectively (and w = 2.4h). Central moments cannot be
accumulated directly, as this requires knowing the centre of
gravity in advance. However

2 2
2 2

22

() 2
x

x x x x x
x

A A A
x x

A A

σ
−

= = − +

 
= −   

 

∑ ∑ ∑

∑ ∑
 (11)

and similarly for 2
yσ , allowing central moments to be derived

from four incremental accumulators:

() 2 22 2x y x y
A A A

Spread
A

+    
− −      
   =

∑ ∑ ∑
 (12)

The range of spread values for the test images is listed in Table 2.
The values for the circle and square are slightly higher than
expected, and have some overlap. Those for the rectangle are less
than expected. Using thresholds of 0.1690 between circles and
squares, and 0.1910 between squares and rectangles gave a 13%

misclassification rate. While this is a significant improvement
over the complexity descriptor, it is still too high to be practical.

Table 2. Range of spread descriptors from the test images.
 Spread
Circle 0.1625 – 0.1681

μ = 0.1645, σ = 0.0019
Square 0.1634 – 0.1904

μ = 0.1743, σ = 0.0096
Rectangle 0.1904 – 0.2299

μ = 0.2075, σ = 0.0134
Misclassification rate 13%

One of the main reasons for the similarity in values between
circles and squares is that squares (especially those oriented
diagonally) tend to develop more rounded corners as a result of
segmentation, making them more circular. It is the corners that
increase the spread of squares relative to circles, so losing these
makes them more similar. Conversely, circles tend to become
more square-like as a result of distortions introduced from the
Bayer pattern demosaicing. For larger circles, this effect would be
less noticeable, but the smaller size of the circles amplifies this
effect. Examples of the ambiguous circles and squares (with
overlapping spread descriptors) are shown in Figure 3.

Similarly, distortion has resulted in identical spread values for the
square and rectangle shown in Figure 4. The square was in the
corner of the playing area, and lens distortion has compressed the
radius, giving it an aspect ratio similar to that of the rectangle.

Figure 3. Ambiguous circles and squares. From left to right:

blue circles from figures 2(a) and 2(b), blue squares from
figures 2(a) and 2(c).

Figure 4. Ambiguous squares and rectangles. Left yellow
square and right yellow rectangle both from figure 2(c).

3.3 AREA
Each of the shapes has a different area. However, this on its own
is insufficient for distinguishing between the different identities
for three reasons. First, the lens distortion has a significant effect
on the area of the patch, with the biggest reduction in the corners
of the playing area. Second, the illumination is lower around the
edges of the playing area, and the dominant effect of this is also a
reduction in the area detected. Third, Bayer pattern demosaicing
also introduces an uncertainty in the area measurement, increasing
the range of values within each of the shape classes. This results
in significant overlap between the classes, as is seen in the first
column of Table 3.

297

Table 3. Range of area descriptors from the test images.
 Unnormalised

area
Normalised by

mean orientation
patch area

Normalised by
max orientation

patch area
Circle 36 – 135

μ = 86, σ = 34
0.73 – 1.54

μ = 1.06, σ = 0.31
0.65 – 1.25

μ = 0.93, σ = 0.26
Square 89 – 204

μ = 158, σ = 36
1.32 – 1.77

μ = 1.51, σ = 0.16
1.19 – 1.52

μ = 1.31, σ = 0.14
Rectangle 179 – 309

μ = 260, σ = 45
2.30 – 2.78

μ = 2.55, σ = 0.18
2.01 – 2.65

μ = 2.28, σ = 0.22
Misclass.
rate

13% 4% 13%

However, in the vicinity of the team patch, there are two
orientation patches. These will be affected similarly by lighting,
and undergo similar distortion. This should enable the area of the
orientation patches to be used to normalise the area of the team
patch. Normalising with respect to the average of the orientation
patches:

2 team
normalised

green pink

A
A

A A
=

+
 (13)

gives the results listed in the second column of Table 3. There is
generally good separation between the classes with a
misclassification error rate of 4%.

The segmented image for the one outlier, the blue circle from the
image in figure 2(b), is shown in Figure 5. The problem is caused
by the green patch only partly being detected (primarily as a result
of lower illumination in the corner). The reduced area of the green
increases the normalised area, resulting in the misclassification.

Figure 5. Coloured patches of outlier robot (blue circle team

patch from Figure 2(b)).

Rather than using the mean of the orientation patches, selecting
the maximum orientation patch solves the problem with this
particular image

()max ,
team

normalised
green pink

A
A

A A
= (14)

Unfortunately, this reduces the separation between classes
resulting in more overlap, increasing the error rate.

4. COMPARISON AND DISCUSSION
Of the three methods, the normalised area is the easiest to
calculate, requiring only a single area accumulator for each
detected region. This method also gave the best results of the three
methods tested.

The next most complex was the compactness or complexity
descriptor. This requires 2 accumulators, one for area and the
other for perimeter. The main difficulty is reliably estimating the
perimeter, especially for the relatively small region sizes
associated with the identity patches. The perimeter is also quite
sensitive to segmentation error, and in particular the blocky or

zig-zag edges resulting from Bayer pattern interpolation. While a
more accurate estimate of the perimeter can be obtained by
smoothing the detected curve [6], such smoothing becomes
complex to implement within a streaming framework.

The method based on moment invariants overcame the difficulties
associated with estimating the perimeter. However it is the most
complex method, requiring four accumulators for each detected
region in order to be able to calculate the moment invariant. The
biggest difficulty with this method was distinguishing between
squares and circles because the descriptor values were close, and
segmentation errors tended to make them closer. This makes
setting of threshold values for the descriptor hard and highly
sensitive to changes.

The classification errors highlight the need for careful tuning of
the colour thresholds for performing segmentation. As a result of
noise and dynamic changes in lighting, occasional errors are
inevitable. Since there is only one robot of each identity, such
errors can be detected when multiple robots of the same identity
are found. In such cases, there are at least two potential methods
for resolving such errors:

• By examining the descriptors for the multiple robots
classified as the same identity, it may be possible to
distinguish between the robots. For example, the smaller
descriptor is more likely to belong to the circle than the
square.

• The spatio-temporal context can be considered to resolve
the errors. Knowing which robot was where in the
previous frame will enable the identity of the ambiguous
robots to be determined.

5. CONCLUSION AND FUTURE WORK
In theory, and with ideal images, any of the methods discussed
would work in determining the identities of the robots. In practise,
with limited resolution, a discrete pixel grid, and pixel labelling
errors resulting from pre-processing and segmentation mean that
misclassifications are inevitable. Particular care is required when
making measurements involving perimeter, and colour
thresholding.

Having determined by analysing the images in Matlab that the
normalised area provides the most reliable identification of the
robots, the next step is to implement the measurement within the
FPGA.

6. REFERENCES
[1] Bailey, D., Sen Gupta, G. and Contreras, M. 2012. Intelligent

camera for object identification and tracking. In 1st
International Conference on Robot Intelligence Technology
and Applications (Gwangju, Korea, 16-18 December, 2012).
1003-1013. DOI= 10.1007/978-3-642-37374-9_97.

[2] Bailey, D. G. 2011. Design for embedded image processing
on FPGAs. John Wiley and Sons (Asia) Pte. Ltd., Singapore.
DOI= 10.1002/9780470828519.

[3] Bramberger, M., Doblander, A., Maier, A., Rinner, B. and
Schwabach, H. 2006. Distributed embedded smart cameras
for surveillance applications. IEEE Computer 39, 2, 68-75.
DOI= 10.1109/MC.2006.55.

[4] Contreras, M., Bailey, D. G. and Sen Gupta, G. 2013. FPGA
implementation of global vision for robot soccer as a smart
camera. In 2nd International Conference on Robot
Intelligence Technology and Applications (Denver, Colorado,

298

USA, 18-20 December, 2013). 657-665. DOI= 10.1007/978-
3-319-05582-4_56.

[5] Davies, E. R. 2005. Machine vision: Theory, algorithms,
practicalities. Morgan Kaufmann, San Francisco, USA.

[6] Ellis, T. J., Proffitt, D., Rosen, D. and Rutkowski, W. 1979.
Measurement of the lengths of digitised curved lines.
Computer Graphics and Image Processing 10, 4, 333-347.
DOI= 10.1016/S0146-664X(79)80042-8.

[7] Kulpa, Z. 1977. Area and perimeter measurement of blobs in
discrete binary pictures. Computer Graphics and Image
Processing 6, 5, 434-451. DOI= 10.1016/S0146-
664X(77)80021-X.

[8] Ma, N., Bailey, D. and Johnston, C. 2008. Optimised single
pass connected components analysis. In International
Conference on Field Programmable Technology (Taipei,
Taiwan, 8-10 December, 2008). 185-192. DOI=
10.1109/FPT.2008.4762382.

[9] Russ, J. C. 2002. The image processing handbook. CRC
Press, Boca Raton, Florida.

[10] Sen Gupta, G., Bailey, D. and Messom, C. 2004. A new
colour-space for efficient and robust segmentation. In Image
and Vision Computing New Zealand (IVCNZ'04) (Akaroa,
NZ, 21-23 November, 2004). 315-320.

299

