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ABSTRACT 
An FPGA based smart camera captures images of soccer robots, 
and processes them using stream processing to identify the 
individual robots. Three standard methods of distinguishing the 
robots based on shape features are compared, and the advantages 
and disadvantages of the different methods discussed. 
Compactness and moment based measures give poor performance 
because of the sensitivity of the low resolution shapes to relatively 
small distortions. Normalised area gave the best results in this 
application. 

Categories and Subject Descriptors 
I.4.7 [Image Processing and Computer Vision]: Feature 
Measurement – Size and shape; I.5.4 [Pattern Recognition]: 
Applications – Computer vision. 

General Terms 
Algorithms, Measurement, Experimentation. 

Keywords 
Robot soccer, compactness, moments, area. 

1. INTRODUCTION 
Robot soccer has often been used as a platform for robotic and 
robot vision research. Recently, we have been exploring [1, 4] an 
FPGA-based smart camera for robot identification. 

With small robots, a global vision system is usually used to track 
the robots and the ball. In a global vision system, the camera is 
mounted over the playing area, and has the complete playing field 
within the field of view. Software based image processing is 
usually used to locate the robots and ball, and pass this data on to 
the strategy processor which determines the desired behaviour, 
and sends commands to the individual robots. 

Moving to an FPGA based smart camera can significantly 
increase both the spatial and temporal resolution, and reduce the 
latency [4], all of which lead to improved control of the robots. 
The smart camera replaces the image processing performed on a 
conventional computer, and performs all of the processing within 
the camera itself [3]. Therefore, only the data extracted from the 

images, rather than the images themselves, need to be sent from 
the camera, reducing communication overhead. Most smart 
cameras store the captured image within a frame buffer before 
beginning processing. Using an FPGA, however, enables the 
images to be processed directly as they are streamed from the 
camera, significantly reducing the latency [1]. However, stream 
processing imposes strict timing constraints (one pixel per clock 
cycle) and requires all processing to be performed on the pixels in 
the raster order. These place significant constraints on the 
algorithms used within the processing. 

Individual robots are identified by coloured patches on the top 
surface of the robots (visible to the global camera, see Figure 1). 
The orientation of the robot is determined from green and pink 
triangles positioned on opposite corners of the robots. The two 
teams are distinguished from the colour of the team patch in the 
centre of the robot; one team is blue, and the other yellow. The 
individual team members are distinguished by the shape of the 
team patch, whether circular, square, or rectangular. 

 
Figure 1. View of robots as seen from the global camera. 

This paper explores different approaches to identify the individual 
robots based on shape features extracted from the team patch, 
subject to the processing limitations associated with processing 
streamed data (using only local information). Specifically, three 
approaches are compared: using compactness or complexity, 
second moments, and areas. 

Section 2 outlines constraints and other complicating factors 
associated with the images, and describes the pre-processing 
performed on the images before shape recognition. Section 3 
describes the three approaches to identifying the robots, while 
section 4 discusses the advantages and limitations of each. 

2. CONSTRAINTS 
When processing the images using an FPGA, stream processing is 
the most appropriate processing mode [2]. This requires all of the 
processing to be performed for a pixel as it is streamed from the 
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camera. Point operations can easily be performed, as can filters 
with appropriate row buffering [2]. However, region processing 
and feature extraction are a little more complex. Single pass 
connected components analysis is able to measure any features 
which can be accumulated incrementally [8], such as area, 
moments, perimeter, etc. However more complex region 
processing, requiring multiple neighbouring pixels, cannot be 
practically implemented due to the timing and processing 
constraints. For efficient resource utilisation of the FPGA, 
limiting calculations to integer or fixed-point arithmetic is a 
necessity. 

The position of the camera over the playing area means that a 
wide angle lens must be used to fit the complete playing area 
within the field of view. This results in significant lens distortion. 
When mounting the camera, it is virtually impossible to have the 
camera precisely perpendicular to the planar playing surface. 
Therefore, mild perspective distortion is also inevitable. The 
effects of these mean that the size of a pixel is not uniform across 
the image (there is a variation of scale), and there are distortions 
to the shapes of objects although this is minor when considering 
shapes locally. Normally such lens distortions would be removed 
through camera calibration and image rectification. However, this 
does not fit easily within a stream processing framework, and 
would significantly impact the latency. Instead, the distorted 
images are processed, with the camera calibration applied to the 
extracted features. 

More significant is the variation in illumination across the image. 
This, combined with global colour thresholding for object 
detection, affects what is detected. The pixels around the edge of 
each coloured patch, which consist of a mixture of colour and 
background, are most sensitive to this, resulting in changes to the 
area detected. When coupled with the relatively small size of each 
coloured patch, this effect can be significant. Small flaws in the 
detection of the shape become magnified the further they are from 
the centre, caused by differences in pixel scale and luminance. 

The colour image sensor uses a Bayer pattern to give the coloured 
pixels. This lowers the effective colour resolution, and the 
interpolation of the colour channels as part of desmoaicing can 
introduce artefacts at coloured boundaries. 

2.1 Processing 
The image processing algorithm [4] starts by capturing raw pixels 
from the image sensor and converting them to full colour using a 
bilinear Bayer interpolation filter. With the camera and lens 
combination used, a pixel skipping mode is required to achieve 
the desired resolution with the field of view covering the complete 
playing area. A non-linear colour edge enhancement filter is then 
used to reduce the blur introduced by the interpolation filter. The 
colour pixels are then converted to luminance and chrominance 
components (using a power of 2 conversion matrix [10]) to 
separate much of the luminance effects of the changing light 
levels. (Note that with the linear transformation, the chrominance 
components will still scale with changes in lighting.) The image is 
then thresholded to detect the colours associated with the patches. 
The output from this stage is a label image, with each pixel 
represented by a label corresponding to the detected colour. A 
connected components analysis algorithm determines groups of 
adjacent pixels with the same label. A simplified single pass 
algorithm is able to be used because the coloured patches are 
known to be convex.  

During connected components analysis, the shape features 
required for shape location and identification are accumulated. 
These include: 

• area; 
• perimeter (determined by detecting the region edges); 
• sum of x, and sum of y (used for calculating the centre of 

gravity); and 
• sum of x2 and sum of y2 (used for calculating second 

moments). 

Each detected region is associated with a robot (or ball), and from 
the features the robot location, orientation, and identity are 
determined. 

 

 

 
Figure 2. Other test images used. 

(a) 

(b) 

(c) 
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2.2 Test Images 
In addition to the image shown in Figure 1, the images in Figure 2 
are also used for testing and analysis of the various methods. 
Figure 1 shows the robots in the centre, where lighting is the best, 
and distortion is minimal. This can be considered as the best case 
conditions. Figure 2(a) shows the robots further from the centre, 
introducing both equal amounts of distortion errors and variations 
in lighting to each team. Both the distortion and lighting are worst 
in the image corners, so are representative of the worst case 
conditions. Figures 2(b) and 2(c) demonstrate a mixture of both 
best and worst case conditions, with alternating team positions. 

3. METHODS CONSIDERED 
The three robots on each team are distinguished by different 
shaped team patches. The different shapes are: 

• a circle 
• a square (with aspect ratio of approximately 1:1); and  
• a rectangle (with aspect ratio of approximately 2.4:1). 

The method used to distinguish these shapes must fit with the 
stream processing model. This limits the range of features that can 
be considered, and rules out features that cannot be calculated 
incrementally (for example those based on the convex hull, 
minimum area enclosing rectangles, Fourier descriptors, etc.), as 
these would require multiple passes. The extraction of the region 
itself would require a two pass component labelling algorithm, 
requiring external frame buffer memory, and severely impact on 
the algorithm latency. 

Due to the highly dynamic nature of robot soccer, the robot 
identification method must be robust to every possible situation. It 
must be rotation invariant, as the robot must be correctly 
identified in any orientation. It must also be invariant to the 
distortions present within the image. The primary distortion is lens 
distortion, which predominantly affects the scale, as a result of the 
reduction in magnification with radius from the centre of the 
image. Therefore, without image rectification, scale invariance is 
also essential. 

Three methods were chosen and compared using Matlab, before 
implementation on the FPGA. 

• One of the most commonly used rotation and scale 
invariant shape descriptors is compactness, or its inverse, 
complexity [5]. It is dimensionless, making it scale 
invariant, and has an advantage of being simple to 
calculate, and its constituent features, area and perimeter, 
can be calculated incrementally. 

• A related shape descriptor is the spread of an object. This 
is based on a moment invariant using second moments. 
Moment invariance makes it independent of orientation, 
and after normalising by the area gives a scale invariant 
dimensionless descriptor. The moment features are also 
able to be calculated incrementally. 

• The observation is made that the different shaped 
identification patches have different areas. The patch area 
on its own cannot be used directly, because of scaling 
issues resulting from distortion, but the area can be 
normalised by the area of the orientation patches. 

Each of the methods will be described in more detail, and results 
compared in the following sections. 

3.1 Compactness or Complexity 
Compactness is a relatively simple and widely used shape 
descriptor [5, 9]. It uses the perimeter, P, and area, A, of a binary 
shape and produces a dimensionless value, irrespective of size or 
orientation: 

2

4 ACompactness
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π

=  (1) 

Compactness has a maximum of 1.0 for circles, and decreases as 
the shape becomes more elongated or has more protrusions (for a 
given area, the perimeter increases). 

From a computation point of view, its inverse, complexity, is 
more convenient to calculate on an FPGA as a simple fixed point 
number can be used: 
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Ideally, the different shapes can be distinguished from their 
different descriptor values: 
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where r is the radius of the circle, and w and h are the width and 
height of the rectangle (w = 2.4h). 

The area can be relatively easily calculated for a binary image by 
totalling the number of pixels present for each shape. However 
calculating the perimeter for binary images is more complex [6, 
7]. The initial approach was to simply count the number of 8-
connected pixels on the edge of the coloured patch (those which 
have at least one 4-connected neighbouring background pixel). 
This gave quite a wide spread of descriptor values, particularly for 
the square and rectangle (see Table 1, first column). The 
significant overlap in the range of values meant that the 
recognition results were not robust, with 38% of the robots 
misclassified. All of the descriptor values were significantly lower 
than the theoretical values calculated above because the perimeter 
along the diagonals is significantly under-estimated.  

Table 1. Range of complexity descriptors from the test images. 
 Simple perimeter Weighted perimeter 
Circle 9.60 – 11.08 

μ = 10.54, σ = 0.52 
14.06 – 15.94  

μ = 14.93, σ = 0.69 
Square 8.65 – 12.60  

μ = 10.70, σ = 1.61 
15.88 – 19.56  

μ = 17.59, σ = 1.41 
Rectangle 10.64 – 14.40  

μ = 12.56, σ = 1.42 
18.55 – 23.03  

μ = 20.57, σ = 1.56 
Misclassification rate 38% 21% 

 
The second approach was to compensate for the under-estimation 
along the diagonals by giving more weight to diagonal pixels. 
This was accomplished by giving a weight of 1.5 to edge pixels 
which had more than one background pixel in its 4-connected 
neighbourhood, something which can easily be detected locally. 
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This perimeter measure tended to slightly over-estimate diagonal 
lengths, giving descriptors that were slightly higher than expected. 
However, the results are significantly improved (see Table 1, 
second column), although there was still some overlap between 
the ranges. Using thresholds of 15.75 between circles and squares, 
and 19.0 between squares and rectangles gave a 21% 
misclassification rate – still too high to be practical.  

3.2 Moments 
The difficulty in accurately measuring the perimeter led to a 
different approach to estimating the complexity. Moments are 
another common method of characterising shape [5], with the 
spread of a shape being characterised by its second moment (the 
variance about the centre of gravity). Objects which are more 
spread would have a higher second moment. In two dimensions,  

2 2
2 2( ) ( )

,   x y

x x y y
A A

σ σ
− −
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The sum of horizontal and vertical variances is invariant to 
rotation, but has units of distance squared. Therefore, to derive a 
scale invariant spread descriptor, the moment invariant can be 
normalised by the area: 
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Assuming that the origin is at the centre of gravity then the ideal 
descriptor values for the different shapes are then 
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where w and h are the width and height of the rectangle 
respectively (and w = 2.4h). Central moments cannot be 
accumulated directly, as this requires knowing the centre of 
gravity in advance. However 

2 2
2 2

22

( ) 2
x

x x x x x
x

A A A
x x

A A

σ
−

= = − +

 
= −   

 

∑ ∑ ∑

∑ ∑
 (11) 

and similarly for 2
yσ , allowing central moments to be derived 

from four incremental accumulators: 
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The range of spread values for the test images is listed in Table 2. 
The values for the circle and square are slightly higher than 
expected, and have some overlap. Those for the rectangle are less 
than expected. Using thresholds of 0.1690 between circles and 
squares, and 0.1910 between squares and rectangles gave a 13% 

misclassification rate. While this is a significant improvement 
over the complexity descriptor, it is still too high to be practical. 

Table 2. Range of spread descriptors from the test images. 
 Spread 
Circle 0.1625 – 0.1681 

μ = 0.1645, σ = 0.0019 
Square 0.1634 – 0.1904 

μ = 0.1743, σ = 0.0096 
Rectangle 0.1904 – 0.2299 

μ = 0.2075, σ = 0.0134 
Misclassification rate 13% 

 
One of the main reasons for the similarity in values between 
circles and squares is that squares (especially those oriented 
diagonally) tend to develop more rounded corners as a result of 
segmentation, making them more circular. It is the corners that 
increase the spread of squares relative to circles, so losing these 
makes them more similar. Conversely, circles tend to become 
more square-like as a result of distortions introduced from the 
Bayer pattern demosaicing. For larger circles, this effect would be 
less noticeable, but the smaller size of the circles amplifies this 
effect. Examples of the ambiguous circles and squares (with 
overlapping spread descriptors) are shown in Figure 3.  

Similarly, distortion has resulted in identical spread values for the 
square and rectangle shown in Figure 4. The square was in the 
corner of the playing area, and lens distortion has compressed the 
radius, giving it an aspect ratio similar to that of the rectangle. 

    
Figure 3. Ambiguous circles and squares. From left to right: 

blue circles from figures 2(a) and 2(b), blue squares from 
figures 2(a) and 2(c). 

  
Figure 4. Ambiguous squares and rectangles. Left yellow 
square and right yellow rectangle both from figure 2(c). 

3.3 AREA 
Each of the shapes has a different area. However, this on its own 
is insufficient for distinguishing between the different identities 
for three reasons. First, the lens distortion has a significant effect 
on the area of the patch, with the biggest reduction in the corners 
of the playing area. Second, the illumination is lower around the 
edges of the playing area, and the dominant effect of this is also a 
reduction in the area detected. Third, Bayer pattern demosaicing 
also introduces an uncertainty in the area measurement, increasing 
the range of values within each of the shape classes. This results 
in significant overlap between the classes, as is seen in the first 
column of Table 3. 
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Table 3. Range of area descriptors from the test images. 
 Unnormalised 

area 
Normalised by 

mean orientation 
patch area 

Normalised by 
max orientation 

patch area 
Circle 36 – 135 

μ = 86, σ = 34 
0.73 – 1.54 

μ = 1.06, σ = 0.31 
0.65 – 1.25  

μ = 0.93, σ = 0.26 
Square 89 – 204 

μ = 158, σ = 36 
1.32 – 1.77 

μ = 1.51, σ = 0.16 
1.19 – 1.52  

μ = 1.31, σ = 0.14 
Rectangle 179 – 309 

μ = 260, σ = 45 
2.30 – 2.78 

μ = 2.55, σ = 0.18 
2.01 – 2.65  

μ = 2.28, σ = 0.22 
Misclass. 
rate 

13% 4% 13% 

 
However, in the vicinity of the team patch, there are two 
orientation patches. These will be affected similarly by lighting, 
and undergo similar distortion. This should enable the area of the 
orientation patches to be used to normalise the area of the team 
patch. Normalising with respect to the average of the orientation 
patches: 

2 team
normalised

green pink

A
A

A A
=

+
 (13) 

gives the results listed in the second column of Table 3. There is 
generally good separation between the classes with a 
misclassification error rate of 4%.  

The segmented image for the one outlier, the blue circle from the 
image in figure 2(b), is shown in Figure 5. The problem is caused 
by the green patch only partly being detected (primarily as a result 
of lower illumination in the corner). The reduced area of the green 
increases the normalised area, resulting in the misclassification. 

 
Figure 5. Coloured patches of outlier robot (blue circle team 

patch from Figure 2(b)). 

Rather than using the mean of the orientation patches, selecting 
the maximum orientation patch solves the problem with this 
particular image 

( )max ,
team

normalised
green pink

A
A

A A
=  (14) 

Unfortunately, this reduces the separation between classes 
resulting in more overlap, increasing the error rate. 

4. COMPARISON AND DISCUSSION 
Of the three methods, the normalised area is the easiest to 
calculate, requiring only a single area accumulator for each 
detected region. This method also gave the best results of the three 
methods tested. 

The next most complex was the compactness or complexity 
descriptor. This requires 2 accumulators, one for area and the 
other for perimeter. The main difficulty is reliably estimating the 
perimeter, especially for the relatively small region sizes 
associated with the identity patches. The perimeter is also quite 
sensitive to segmentation error, and in particular the blocky or 

zig-zag edges resulting from Bayer pattern interpolation. While a 
more accurate estimate of the perimeter can be obtained by 
smoothing the detected curve [6], such smoothing becomes 
complex to implement within a streaming framework. 

The method based on moment invariants overcame the difficulties 
associated with estimating the perimeter. However it is the most 
complex method, requiring four accumulators for each detected 
region in order to be able to calculate the moment invariant. The 
biggest difficulty with this method was distinguishing between 
squares and circles because the descriptor values were close, and 
segmentation errors tended to make them closer. This makes 
setting of threshold values for the descriptor hard and highly 
sensitive to changes. 

The classification errors highlight the need for careful tuning of 
the colour thresholds for performing segmentation. As a result of 
noise and dynamic changes in lighting, occasional errors are 
inevitable. Since there is only one robot of each identity, such 
errors can be detected when multiple robots of the same identity 
are found. In such cases, there are at least two potential methods 
for resolving such errors: 

• By examining the descriptors for the multiple robots 
classified as the same identity, it may be possible to 
distinguish between the robots. For example, the smaller 
descriptor is more likely to belong to the circle than the 
square. 

• The spatio-temporal context can be considered to resolve 
the errors. Knowing which robot was where in the 
previous frame will enable the identity of the ambiguous 
robots to be determined. 

5. CONCLUSION AND FUTURE WORK 
In theory, and with ideal images, any of the methods discussed 
would work in determining the identities of the robots. In practise, 
with limited resolution, a discrete pixel grid, and pixel labelling 
errors resulting from pre-processing and segmentation mean that 
misclassifications are inevitable. Particular care is required when 
making measurements involving perimeter, and colour 
thresholding. 

Having determined by analysing the images in Matlab that the 
normalised area provides the most reliable identification of the 
robots, the next step is to implement the measurement within the 
FPGA. 
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